Highlights
- •This open-label, randomized, phase 3 study provided evidence of non-inferiority of Quinvaxem in a newly developed compact prefilled auto-disabled (cPAD) injection system versus Quinvaxem single-dose vials.
- •In this study, infants were randomized to receive either Quinvaxem in cPAD system or Quinvaxem in single-dose vial system to assess the immunogenicity of each vaccine against five pathogens: hepatitis B (HB), Corynebacterium diphtheriae, Clostridium tetani, Bordetella pertussis, and Haemophilus influenzae type b polyribosylribitol phosphate (Hib PRP).
- •Both vaccine presentations achieved more than 92% seroprotection against Hib-PRP, HB, diphtheria, and tetanus toxoids, and seroconversion against B. pertussis. The incidence of solicited and unsolicited adverse events was similar across the two groups with no serious adverse events related to the vaccines reported.
- •In addition to seroprotection, Quinvaxem in cPAD injection offers the ease of vaccine administration coupled with reduced possibility of contamination as compared to Quinvaxem in single-dose vial system, and helps to simplify and harmonize vaccination schedules, ultimately increasing vaccine coverage.
- •Based on these findings, Quinvaxem in cPAD injection can be considered as a practical alternative to the single-dose vial system for immunization of infants.
Summary
Objective
Methods
Results
Conclusions
Keywords
1. Introduction
World Health Organization. Global immunization vision and strategy 2014. Geneva: WHO; Available at: http://whqlibdoc.who.int/hq/2005/WHO_IVB_05.05.pdf?ua=1 (accessed March 4, 2015).
World Health Organization. Global immunization data, February 2014. Geneva: WHO; Available at: http://www.who.int/immunization/monitoring_surveillance/Global_Immunization_Data.pdf?ua=1 (accessed March 4, 2015).
World Health Organization. Global immunization data, February 2014. Geneva: WHO; Available at: http://www.who.int/immunization/monitoring_surveillance/Global_Immunization_Data.pdf?ua=1 (accessed March 4, 2015).
World Health Organization. WHO global immunization data 2014. Geneva: WHO; Available at: http://www.who.int/immunization/monitoring_surveillance/global_immunization_data.pdf (accessed March 4, 2015).
GAVI Alliance. Pentavalent vaccine infographic, April 2013. GAVI; Available at: http://www.gavialliance.org/support/nvs/pentavalent/infographic/ (accessed March 18, 2015).
Vaccine News Daily; Available at: http://vaccinenewsdaily com/vaccine_development/331301-pentavalent-vaccine-now-available-in-73-countries/2014 (accessed March 5, 2015).
World Health Organization. WHO prequalified vaccines. Geneva: WHO; Available at: http://www.who.int/immunization_standards/vaccine_quality/PQ_vaccine_list_en/en/. Last updated April 2014 (accessed 3 June, 2015).
Quinvaxem® summary of product characteristics. Available at: http://www.who.int/immunization_standards/vaccine_quality/quinvaxem_PI_eng.pdf (accessed March 5, 2015).
World Health Organization. Safety of Quinvaxem (DTwP–HepB–Hib) pentavalent vaccine. Geneva: WHO; Available at: http://www.who.int/immunization_standards/vaccine_quality/quinvaxem_pqnote_may2013/en/ (accessed March 5, 2015).
PATH. Vaccines in the cPAD™ injection system, March 2015. PATH; Available at: http://www.who.int/immunization/programmes_systems/service_delivery/InfoBulletin_Uniject_March2015_FINAL_ENG.pdf (accessed April 10, 2015).
Lorenson K, Mendoza M, Zaffran M. Stakeholder perceptions of pentavalent vaccine (DTwP–HepB–Hib) in the Uniject™ injection system. PATH;. Available at: http://www.path.org/publications/files/TS_dtwp_hepb_hib.pdf (accessed March 6, 2015).
PATH. Vaccines in the cPAD™ injection system, March 2015. PATH; Available at: http://www.who.int/immunization/programmes_systems/service_delivery/InfoBulletin_Uniject_March2015_FINAL_ENG.pdf (accessed April 10, 2015).
PATH. The Uniject injection system: multi-country experience and evidence, February 2011. PATH;. Available at: http://www.path.org/publications/files/RH_depo_subq_experience.pdf (accessed July 2, 2015).
Colombini A, Guillermet E, Dicko HM, Mai LT, Hane F, Jaillard P, Gessner BD. Optimal approaches for the use of DTP–HepB–Hib vaccine in a compact prefilled auto disable (cPAD) syringe in resource-poor settings. Poster presentation. 16th International Congress on Infectious Diseases, Cape Town, South Africa, April 2–5, 2014.
PATH. The radically simple Uniject™ injection system. PATH; Available at: http://path.org/projects/uniject.php (accessed February 3, 2016).
PATH. The radically simple Uniject™ injection system. PATH; Available at: http://path.org/projects/uniject.php (accessed February 3, 2016).
PATH. Vaccines in the Uniject™ injection system. PATH;. Available at: http://www.path.org/publications/files/TS_update_uniject_vaccine.pdf (accessed February 3, 2016).
PATH. The radically simple Uniject™ injection system. PATH; Available at: http://path.org/projects/uniject.php (accessed February 3, 2016).
PATH. Vaccines in the Uniject™ injection system. PATH;. Available at: http://www.path.org/publications/files/TS_update_uniject_vaccine.pdf (accessed February 3, 2016).
PATH. Status report on the Uniject™ prefilled injection device. PATH;. Available at: http://www.path.org/publications/files/Uniject-Status-Report.pdf (accessed February 3, 2016).
PATH. The Uniject injection system: multi-country experience and evidence. PATH;. Available at: http://www.path.org/publications/files/RH_depo_subq_experience.pdf (accessed February 3, 2016).
2. Methods
2.1 Study population
2.2 Study design and vaccination schedule
2.3 Study assessments
2.3.1 Primary immunogenicity endpoint
2.3.2 Secondary endpoints
2.3.3 Serology evaluations
2.3.4 Safety and tolerability
2.4 Statistical methods
2.4.1 Sample size
3. Results
3.1 Study disposition and clinical characteristics

Characteristics | cPAD (N = 197) | Single-dose (N = 198) | Total (n = 395) |
---|---|---|---|
Sex, n (%) | |||
Male | 103 (52.3) | 100 (50.5) | 203 (51.4) |
Female | 94 (47.7) | 98 (49.5) | 192 (48.6) |
Age (weeks), mean (SD) | 6.93 (0.94) | 6.93 (1.0) | 6.93 (0.96) |
Weight (kg), mean (SD) | 4.64 (0.60) | 4.66 (0.65) | 4.65 (0.62) |
Prior BCG vaccination, n (%) | |||
Yes | 29 (14.7) | 31 (15.7) | 60 (15.2) |
No | 168 (85.3) | 167 (84.3) | 335 (84.8) |
3.2 Immunogenicity analysis
3.2.1 Primary immunogenicity endpoint
Seroprotection/ seroconversion | cPAD (N = 196) n (%) | Single-dose (N = 197) n (%) | Diff. (95% CI) |
---|---|---|---|
Hib | |||
Baseline (day 1) | 137 (69.9) | 153 (77.7) | |
Visit 4 (day 85) | 193 (98.5) | 194 (98.5) | 0.0 (−3.05, 3.02) |
Diphtheria | |||
Baseline (day 1) | 46 (23.5) | 39 (19.8) | |
Visit 4 (day 85) | 196 (100) | 195 (99.0) | 1.0 (−1.04, 3.63) |
Tetanus | |||
Baseline (day 1) | 181 (92.3) | 189 (95.9) | |
Visit 4 (day 85) | 196 (100) | 197 (100) | 0.0 (−1.92, 1.91) |
Hepatitis B | |||
Baseline (day 1) | 54 (27.6) | 51 (25.9) | |
Visit 4 (day 85) | 182 (92.9) | 184 (93.4) | −0.5 (−5.78, 4.66) |
Pertussis | |||
Visit 4 (day 85) | 187 (95.4) | 191 (97.0) | −1.5 (−5.78, 2.51) |
Seroprotection/ seroconversion | cPAD (N = 197) n (%) | Single-dose (N = 198) n (%) | Diff. (95% CI) |
---|---|---|---|
Hib | |||
Baseline (day 1) | 138 (70.1) | 153 (77.3) | |
Visit 4 (day 85) | 194 (98.5) | 195 (98.5) | 0.0 (−3.04, 3.01) |
Diphtheria | |||
Baseline (day 1) | 46 (23.4) | 39 (19.7) | |
Visit 4 (day 85) | 197 (100) | 196 (99.0) | 1.0 (−1.04, 3.61) |
Tetanus | |||
Baseline (day 1) | 182 (92.4) | 190 (96.0) | |
Visit 4 (day 85) | 197 (100) | 198 (100) | 0.0 (−1.91, 1.90) |
Hepatitis B | |||
Baseline (day 1) | 54 (27.4) | 51 (25.8) | |
Visit 4 (day 85) | 183 (92.9) | 184 (92.9) | 0.0 (−5.31, 5.23) |
Pertussis | |||
Visit 4 (day 85) | 188 (95.4) | 192 (97.0) | −1.5 (−5.75, 2.50) |
3.2.2 Secondary immunogenicity endpoint
Antigen | cPAD (N = 196) n (%) | Single-dose (N = 197) n (%) | Ratio, cPAD/single-dose |
---|---|---|---|
Anti-Hib PRP concentration | |||
Pre-vaccination GMC | 0.38 | 0.43 | |
Post-vaccination GMC | 4.42 | 4.24 | |
GMC fold-increase | 11.51 | 9.86 | |
Ratio of GMC fold-increase | 1.167 | ||
GMC ratio | 1.042 | ||
Anti-diphtheria concentration | |||
Pre-vaccination GMC | 0.067 | 0.066 | |
Post-vaccination GMC | 1.53 | 1.545 | |
GMC fold-increase | 22.79 | 23.31 | |
Ratio of GMC fold-increase | 0.978 | ||
GMC ratio | 0.992 | ||
Anti-tetanus concentration | |||
Pre-vaccination GMC | 1.230 | 1.266 | |
Post-vaccination GMC | 1.11 | 1.234 | |
GMC fold-increase | 0.902 | 0.974 | |
Ratio of GMC fold-increase | 0.925 | ||
GMC ratio | 0.899 | ||
Anti-hepatitis B concentration | |||
Pre-vaccination GMC | 5.4 | 4.9 | |
Post-vaccination GMC | 149.4 | 138.5 | |
GMC fold-increase | 27.5 | 28.5 | |
Ratio of GMC fold-increase | 1.0 | ||
GMC ratio | 1.1 | ||
Anti-Bordetella pertussis concentration | |||
Pre-vaccination GMC | 4.6 | 4.6 | |
Post-vaccination GMC | 38.6 | 42.7 | |
GMC fold-increase | 8.3 | 9.4 | |
Ratio of GMC fold-increase | 0.9 | ||
GMC ratio | 0.9 |
cPAD (N = 196) n (%) | Single-dose (N = 197) n (%) | |
---|---|---|
Unadjusted for vaccinator | ||
Visit 4 (day 85) | ||
Number of responders | 172 (87.76) | 176 (89.34) |
Difference in rates | −1.585 | |
95% CI | (−8.01, 4.81) | |
Adjusted for vaccinator | ||
Visit 4 (day 85) | ||
Number of responders | 172 (87.75) | 176 (89.34) |
Difference in rates | −1.594 | |
95% CI | (−7.86, 4.68) |
3.3 Safety
cPAD (N = 200) n (%) | Single-dose (N = 200) n (%) | Risk difference, cPAD − single-dose difference | |
---|---|---|---|
Solicited AEs | |||
Infants with at least one solicited AE | 185 (92.5) | 184 (92.0) | 0.5 |
Infants with at least one local event | 175 (87.5) | 169 (84.5) | 3.0 |
Infants with erythema | 52 (26.0) | 61 (30.5) | −4.5 |
Infants with induration | 74 (37.0) | 76 (38.0) | −1.0 |
Infants with tenderness | 171 (85.5) | 153 (76.5) | 9.0 |
Infants with at least one systemic event | 85 (42.5) | 83 (41.5) | 1.0 |
Infants with fever (≥38 °C) | 85 (42.5) | 83 (41.5) | 1.0 |
Infants with high fever (≥39.5 °C) | 1 (0.5) | 8 (4.0) | −3.5 |
Unsolicited AEs | |||
Infants with at least one unsolicited AE | 131 (65.5) | 138 (69.0) | −3.5 |
Infants with at least one unsolicited AE assessed as related to study vaccine | 85 (42.5) | 84 (42.0) | −0.5 |
Crying | 0 | 1 (0.5) | -0.5 |
Pyrexia | 85 (42.5) | 83 (41.5) | 1.0 |
Infants with at least one serious AE | 5 (2.5) | 3 (1.5) | 1.0 |
4. Discussion
World Health Organization. Pertussis vaccines. WHO position paper, October 2010. Geneva: WHO; Available at: http://www.who.int/immunization/pertussis_grad_safety.pdf (accessed June 2, 2015).
World Health Organization. WHO Information Sheet: Observed rate of vaccine reactions—diphtheria, pertussis, tetanus vaccines, May 2014. Geneva: WHO;. Available at: http://www.who.int/vaccine_safety/initiative/tools/DTP_vaccine_rates_information_sheet.pdf?ua=1 (accessed June 8, 2015).
World Health Organization. WHO SAGE pertussis working group. Background paper, April 2014. Geneva: WHO; Available at: http://www.who.int/immunization/sage/meetings/2014/april/1_Pertussis_background_FINAL4_web.pdf?ua=1 (accessed June 15, 2015).
World Health Organization. Tetanus vaccine: WHO position paper. Wkly Epidemiol Rec 2006; Available at: http://www.who.int/immunization/wer8120tetanus_May06_position_paper.pdf?ua=1 (accessed March 6, 2015) 81:198–207.
- Panpitpat C.
- Thisyakorn U.
- Chotpitayasunondh T.
- Furer E.
- Que J.U.
- Hasler T.
- et al.
PATH. Vaccines in UnijectTM injection system, August 2013. PATH;. Available at: http://www.path.org/publications/files/TS_update_uniject_vaccine.pdf (accessed February 22, 2015).
Quinvaxem injection DTwP–HepB–Hib fully liquid combination vaccine. Prescribing information.; 2010. Available at: http://www.who.int/immunization_standards/vaccine_quality/quinvaxem_PI_eng.pdf (accessed May 5, 2015).
Quinvaxem injection DTwP–HepB–Hib fully liquid combination vaccine. Prescribing information.; 2010. Available at: http://www.who.int/immunization_standards/vaccine_quality/quinvaxem_PI_eng.pdf (accessed May 5, 2015).
PATH. Vaccines in UnijectTM injection system, August 2013. PATH;. Available at: http://www.path.org/publications/files/TS_update_uniject_vaccine.pdf (accessed February 22, 2015).
Colombini A, Guillermet E, Dicko HM, Mai LT, Hane F, Jaillard P, Gessner BD. Optimal approaches for the use of DTP–HepB–Hib vaccine in a compact prefilled auto disable (cPAD) syringe in resource-poor settings. Poster presentation. 16th International Congress on Infectious Diseases, Cape Town, South Africa, April 2–5, 2014.
PATH. Vaccines in UnijectTM injection system, August 2013. PATH;. Available at: http://www.path.org/publications/files/TS_update_uniject_vaccine.pdf (accessed February 22, 2015).
PATH. The Uniject injection system: multi-country experience and evidence, February 2011. PATH;. Available at: http://www.path.org/publications/files/RH_depo_subq_experience.pdf (accessed July 2, 2015).
PATH. Vaccines in UnijectTM injection system, August 2013. PATH;. Available at: http://www.path.org/publications/files/TS_update_uniject_vaccine.pdf (accessed February 22, 2015).
Quinvaxem injection DTwP–HepB–Hib fully liquid combination vaccine. Prescribing information.; 2010. Available at: http://www.who.int/immunization_standards/vaccine_quality/quinvaxem_PI_eng.pdf (accessed May 5, 2015).
PATH. Logistics and waste management benefits of depo-subQ in Uniject. PATH; 2011. Available at: http://www.path.org/publications/files/RH_depo_subq_logistics.pdf (accessed May 30, 2015).
PATH. The Uniject injection system: multi-country experience and evidence, February 2011. PATH;. Available at: http://www.path.org/publications/files/RH_depo_subq_experience.pdf (accessed May 30, 2015).
World Health Organization, Department of Vaccines and Biologicals. WHO policy statement. The use of opened multi-dose vials of vaccine in subsequent immunization sessions, March 2000. Geneva: WHO;. Available at: http://apps.who.int/iris/bitstream/10665/66278/1/WHO_V-B_00.09_eng.pdf?ua=1 (accessed May 30, 2015).
PATH. Vaccines in UnijectTM injection system, August 2013. PATH;. Available at: http://www.path.org/publications/files/TS_update_uniject_vaccine.pdf (accessed February 22, 2015).
Author contributions
Acknowledgements
References
World Health Organization. Global immunization vision and strategy 2014. Geneva: WHO; Available at: http://whqlibdoc.who.int/hq/2005/WHO_IVB_05.05.pdf?ua=1 (accessed March 4, 2015).
World Health Organization. Global immunization data, February 2014. Geneva: WHO; Available at: http://www.who.int/immunization/monitoring_surveillance/Global_Immunization_Data.pdf?ua=1 (accessed March 4, 2015).
- Comparative effectiveness of acellular versus whole-cell pertussis vaccines in teenagers.Pediatrics. 2013; 131: 1716-1722
- Expanded programme on immunization.World Health Stat Q. 1988; 41: 59-63
World Health Organization. WHO global immunization data 2014. Geneva: WHO; Available at: http://www.who.int/immunization/monitoring_surveillance/global_immunization_data.pdf (accessed March 4, 2015).
GAVI Alliance. Pentavalent vaccine infographic, April 2013. GAVI; Available at: http://www.gavialliance.org/support/nvs/pentavalent/infographic/ (accessed March 18, 2015).
Vaccine News Daily; Available at: http://vaccinenewsdaily com/vaccine_development/331301-pentavalent-vaccine-now-available-in-73-countries/2014 (accessed March 5, 2015).
World Health Organization. WHO prequalified vaccines. Geneva: WHO; Available at: http://www.who.int/immunization_standards/vaccine_quality/PQ_vaccine_list_en/en/. Last updated April 2014 (accessed 3 June, 2015).
Quinvaxem® summary of product characteristics. Available at: http://www.who.int/immunization_standards/vaccine_quality/quinvaxem_PI_eng.pdf (accessed March 5, 2015).
- Development and introduction of a ready-to-use pediatric pentavalent vaccine to meet and sustain the needs of developing countries—Quinvaxem®: the first 5 years.Vaccine. 2012; 30: 6241-6248
World Health Organization. Safety of Quinvaxem (DTwP–HepB–Hib) pentavalent vaccine. Geneva: WHO; Available at: http://www.who.int/immunization_standards/vaccine_quality/quinvaxem_pqnote_may2013/en/ (accessed March 5, 2015).
- Post-authorization safety surveillance of a liquid pentavalent vaccine in Guatemalan children.Vaccine. 2013; 31: 5909-5914
- Interchangeability of Quinvaxem during primary vaccination schedules: results from a phase IV, single-blind, randomized, controlled, single-center, non-inferiority study.Vaccine. 2014; 32: 888-894
- Safety and immunogenicity of a new fully liquid DTPw–HepB–Hib combination vaccine in infants.Hum Vaccin. 2006; 2: 155-160
- A fully liquid DTPw–HepB–Hib combination vaccine for booster vaccination of toddlers in El Salvador.Rev Panam Salud Publica. 2010; 27: 117-124
PATH. Vaccines in the cPAD™ injection system, March 2015. PATH; Available at: http://www.who.int/immunization/programmes_systems/service_delivery/InfoBulletin_Uniject_March2015_FINAL_ENG.pdf (accessed April 10, 2015).
Lorenson K, Mendoza M, Zaffran M. Stakeholder perceptions of pentavalent vaccine (DTwP–HepB–Hib) in the Uniject™ injection system. PATH;. Available at: http://www.path.org/publications/files/TS_dtwp_hepb_hib.pdf (accessed March 6, 2015).
- Safety, effectiveness and ease of use of a non-reusable syringe in a developing country immunization programme.Bull World Health Organ. 1995; 73: 57-63
PATH. The Uniject injection system: multi-country experience and evidence, February 2011. PATH;. Available at: http://www.path.org/publications/files/RH_depo_subq_experience.pdf (accessed July 2, 2015).
Colombini A, Guillermet E, Dicko HM, Mai LT, Hane F, Jaillard P, Gessner BD. Optimal approaches for the use of DTP–HepB–Hib vaccine in a compact prefilled auto disable (cPAD) syringe in resource-poor settings. Poster presentation. 16th International Congress on Infectious Diseases, Cape Town, South Africa, April 2–5, 2014.
- Single-dose versus multi-dose vaccine vials for immunization programmes in developing countries.Bull World Health Organ. 2003; 81: 726-731
- Development and introduction of a ready-to-use pediatric pentavalent vaccine to meet and sustain the needs of developing countries. Quinvaxem: the first 5 years.Vaccine. 2012; 30: 6241-6248
PATH. The radically simple Uniject™ injection system. PATH; Available at: http://path.org/projects/uniject.php (accessed February 3, 2016).
PATH. Vaccines in the Uniject™ injection system. PATH;. Available at: http://www.path.org/publications/files/TS_update_uniject_vaccine.pdf (accessed February 3, 2016).
PATH. Status report on the Uniject™ prefilled injection device. PATH;. Available at: http://www.path.org/publications/files/Uniject-Status-Report.pdf (accessed February 3, 2016).
PATH. The Uniject injection system: multi-country experience and evidence. PATH;. Available at: http://www.path.org/publications/files/RH_depo_subq_experience.pdf (accessed February 3, 2016).
- The immunogenicity and safety of a reduced PRP-content DTPw–HBV/Hib vaccine when administered according to the accelerated EPI schedule.BMC Infect Dis. 2010; 10: 298
- A phase III single arm, multicenter, open-label study to assess the immunogenicity and tolerability of a pentavalent DTwP–HepB–Hib vaccine in Indian infants.Hum Vaccin Immunother. 2013; 9: 1903-1909
- Immunogenicity and reactogenicity of a combined fully liquid DTPw–HepB–Hib pentavalent vaccine in healthy infants: no clinically relevant impact of a birth dose of hepatitis B vaccine.Int J Infect Dis. 2011; 15: 24-29
- Can infants be protected by means of maternal vaccination?.Clin Microbiol Infect. 2012; 18: 85-92
- Randomised trial of Haemophilus influenzae type-b tetanus protein conjugate vaccine [corrected] for prevention of pneumonia and meningitis in Gambian infants.Lancet. 1997; 349: 1191-1197
World Health Organization. Pertussis vaccines. WHO position paper, October 2010. Geneva: WHO; Available at: http://www.who.int/immunization/pertussis_grad_safety.pdf (accessed June 2, 2015).
World Health Organization. WHO Information Sheet: Observed rate of vaccine reactions—diphtheria, pertussis, tetanus vaccines, May 2014. Geneva: WHO;. Available at: http://www.who.int/vaccine_safety/initiative/tools/DTP_vaccine_rates_information_sheet.pdf?ua=1 (accessed June 8, 2015).
World Health Organization. WHO SAGE pertussis working group. Background paper, April 2014. Geneva: WHO; Available at: http://www.who.int/immunization/sage/meetings/2014/april/1_Pertussis_background_FINAL4_web.pdf?ua=1 (accessed June 15, 2015).
- Bordetella pertussis infection induces a mucosal IL-17 response and long-lived Th17 and Th1 immune memory cells in nonhuman primates.Mucosal Immunol. 2013; 6: 787-796
- Reply to Domenech de Celles et al.: Infection and transmission of pertussis in the baboon model.Proc Natl Acad Sci U S A. 2014; 111: 718
World Health Organization. Tetanus vaccine: WHO position paper. Wkly Epidemiol Rec 2006; Available at: http://www.who.int/immunization/wer8120tetanus_May06_position_paper.pdf?ua=1 (accessed March 6, 2015) 81:198–207.
- Elevated levels of maternal anti-tetanus toxin antibodies do not suppress the immune response to a Haemophilus influenzae type b polyribosylphosphate–tetanus toxoid conjugate vaccine.Bull World Health Organ. 2000; 78: 364-371
- Immunogenicity of Infanrix hexa administered at 3, 5 and 11 months of age.Vaccine. 2012; 30: 2710-2714
- The immunological basis for immunization series, module 3: tetanus (update 2006).World Health Organization, Geneva, Switzerland2007
- Half-life of the maternal IgG1 allotype in infants.J Clin Immunol. 1993; 13: 145-151
PATH. Vaccines in UnijectTM injection system, August 2013. PATH;. Available at: http://www.path.org/publications/files/TS_update_uniject_vaccine.pdf (accessed February 22, 2015).
Quinvaxem injection DTwP–HepB–Hib fully liquid combination vaccine. Prescribing information.; 2010. Available at: http://www.who.int/immunization_standards/vaccine_quality/quinvaxem_PI_eng.pdf (accessed May 5, 2015).
- Vaccine wastage in Bangladesh.Vaccine. 2010; 28: 858-863
- Monitoring vaccine wastage at country level: guidelines for programme managers.WHO, Geneva2005 (Available at: http://whqlibdoc.who.int/hq/2005/WHO_V&B_03.18.Rev.1_eng.pdf (accessed June 12, 2015))
- Impact of wastage on single and multi-dose vaccine vials: Implications for introducing pneumococcal vaccines in developing countries.Hum Vaccin. 2010; 6: 270-278
PATH. Logistics and waste management benefits of depo-subQ in Uniject. PATH; 2011. Available at: http://www.path.org/publications/files/RH_depo_subq_logistics.pdf (accessed May 30, 2015).
PATH. The Uniject injection system: multi-country experience and evidence, February 2011. PATH;. Available at: http://www.path.org/publications/files/RH_depo_subq_experience.pdf (accessed May 30, 2015).
World Health Organization, Department of Vaccines and Biologicals. WHO policy statement. The use of opened multi-dose vials of vaccine in subsequent immunization sessions, March 2000. Geneva: WHO;. Available at: http://apps.who.int/iris/bitstream/10665/66278/1/WHO_V-B_00.09_eng.pdf?ua=1 (accessed May 30, 2015).
Article info
Publication history
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy