Highlights
- •The seroprevalence of SARS-CoV-2 in Vellore, India had reached over 70% by July 2021
- •Seroprevalence varied according to subpopulation, with the highest levels found in urban slums
- •The vast majority of the infections (75%) were asymptomatic
- •Vaccine uptake among urban slums and the rural population was poor
- •A targeted vaccination for high-risk individuals is suggested
Abstract
Objectives
Methods
Results
Conclusion
Key words
Introduction
JHU CSSE Coronavirus COVID-19 Global Cases: https://arcg.is/0fHmTX (accessed on August 31, 2021).
Anand A, Sandefur J, Subramanian A. Three new estimates of deaths in India during the pandemic. Center for Global Development. Jul 20, 2021. https://www.cgdev.org/blog/three-new-estimates-deaths-during-pandemic.
- Wu D
- Wu T
- Liu Q
- Yang Z.
- Oran DP
- Topol EJ.
- Pei S
- Yamana TK
- Kandula S
- Galanti M
- Shaman J.
- Anderson EM
- Goodwin EC
- Verma A
- Arevalo CP
- Bolton MJ
- Weirick ME
- Betts MR
- Wherry EJ
- Meyer NJ
- Cherry S
- Bates P
- Rader DJ
- Hensley SE
Seasonal human coronavirus antibodies are boosted upon SARS-CoV-2 infection but not associated with protection.
Methods
Study design and participants

Procedure
Statistical analysis
Results
Demographics | Categories | Total N = 2433; n (%) or n/N (%) | Rural N = 756; n (%) or n/N (%) | Urban slum N = 645; n (%) or n/N (%) | Urban affluent N = 534, n (%) or n/N (%) | Healthcare workers N = 498, n (%) or n/N (%) |
---|---|---|---|---|---|---|
Age | < 20 years | 454 (18.7) | 159 (21) | 198 (30.7) | 92 (17.2) | 5 (1) |
21–40 years | 1017 (41.8) | 220 (29.1) | 198 (30.7) | 181 (33.9) | 418 (83.9) | |
41–60 years | 698 (28.7) | 253 (33.5) | 185 (28.7) | 188 (35.2) | 72 (14.5) | |
> 60 years | 264 (10.9) | 124 (16.4) | 64 (9.9) | 73 (13.7) | 3 (0.6) | |
Gender | Male | 1,055(43.4) | 273 (36.1) | 255 (39.5) | 298 (55.8) | 229 (46) |
Female | 1,378 (56.6) | 483 (63.9) | 390 (60.5) | 236 (44.2) | 269 (54) | |
Education | Illiterate | 194 (8) | 107 (14.2) | 87 (13.5) | 0 (0) | 0 (0) |
Primary to high school* | 1361 (55.9) | 573 (75.8) | 517 (80.2) | 213 (39.9) | 58 (11.6) | |
Graduate | 878 (36.1) | 76 (10.1) | 41 (6.4) | 321 (60.1) | 440 (88.4) | |
Occupation | Professional | 514 (21.1) | 8 (1.1) | 2 (0.3) | 126 (23.6) | 378 (75.9) |
Semi-professional | 231 (9.5) | 28 (3.7) | 14 (2.2) | 107 (20) | 82 (16.5) | |
Skilled worker | 528 (21.7) | 272 (36) | 116 (18) | 102 (19.1) | 38 (7.6) | |
Unskilled/daily wage laborer | 174 (7.2) | 89 (11.8) | 85 (13.2) | 0 (0) | 0 (0) | |
Housewife/unemployed/students | 986 (40.5) | 359 (47.5) | 428 (66.4) | 199 (37.3) | 0 (0) | |
Socioeconomic class | Upper | 313 (12.9) | 0 (0) | 0 (0) | 116 (21.7) | 197 (39.6) |
Middle | 923 (37.9) | 144 (19) | 75 (11.6) | 418 (78.3) | 286 (57.4) | |
Lower | 1197 (49.2) | 612 (81) | 570 (88.4) | 0 (0) | 15 (3.0) | |
Comorbidities | Diabetes | 271 (11.1) | 93 (12.3) | 82 (12.7) | 83 (15.5) | 13 (2.6) |
Hypertension | 261 (10.7) | 99 (13.1) | 66 (10.2) | 73 (13.7) | 23 (4.6) | |
COPD***/asthma | 51 (2.1) | 11 (1.5) | 5 (0.8) | 10 (1.9) | 25 (5) | |
CAD/heart disease | 34 (1.4) | 13 (1.7) | 2 (0.3) | 16 (3) | 3 (0.6) | |
Presence of symptoms** | 588 (24.2) | 103 (13.4) | 104 (16.1) | 151 (28.3) | 230 (46.2) | |
Symptomatic infection requiring hospitalization | 99 (4.1) | 0 (0) | 6 (0.9) | 18 (3.4) | 75 (15.1) | |
Mask usage in public places | Cloth | 1,414 (58.1) | 606 (80.2) | 584 (90.5) | 164 (30.7) | 60 (12) |
Surgical | 855 (35.1) | 150 (19.8) | 57 (8.8) | 300 (56.2) | 348 (69.9) | |
N95 | 164 (6.8) | 0(0) | 4 (0.6) | 70 (13.1) | 90 (18.1) | |
HCoV antibody positivity among SARS-CoV-2 +ve | 391/391 (100) | 81/81 (100) | 136/136 (100) | 73/73 (100) | 101/101 (100) | |
HCoV antibody positivity among SARS-CoV-2 –ve | 834/837 (99.6) | 221/221 (100) | 172/175 (98.2) | 222/222 (100) | 219/219 (100) |
Subpopulation | End of wave 1 (January 2021) (N = 1228) | End of wave 2 (July 2021) (N = 1205) | ||||
---|---|---|---|---|---|---|
Serology IgG, n/N (%) or % | 95% CI | Serology IgG, n/N (%) or % | 95% CI | Vaccination status, n/N (%) | 95% CI | |
Rural | 81/302 (26.8) | 22.9–32.2 | 307/454 (67.6) | 63.1–71.9 | 47/454 (10.4) | 7.7–13.5 |
Urban slum | 136/311 (43.7) | 38.1–49.4 | 251/334 (75.1) | 70.2–79.7 | 22/334 (6.6) | 4.2–9.8 |
Urban affluent | 73/295 (24.7) | 20.0–30.0 | 204/239 (85.4) | 80.2–89.6 | 157/239 (65.7) | 59.3–71.7 |
Healthcare workers | 101/320 (31.6) | 26.5–37.0 | 170/178 (95.5) | 91.3–98.0 | 163/178 (91.6) | 86.5–95.2 |
Overall weighted prevalence adjusted for Vellore population | 28.5 | 22.3–33.7 | 71.6 | 62.8–80.5 | 20.3 | 0–46.7 |


Demographics | Categories | Seropositivity, n/N (%) | ||
---|---|---|---|---|
End of wave 1 | End of wave 2 | Overall | ||
Subpopulation | Rural | 81/302 (26.8) | 307/454 (67.6) | 388/756 (51.3) |
Urban slum | 136/311 (43.7) | 251/334 (75.1) | 387/645 (60.0) | |
Urban affluent | 73/295 (24.7) | 204/239 (85.4) | 277/534 (51.9) | |
Healthcare workers | 101/320 (31.6) | 170/178 (95.5) | 271/498 (54.4) | |
Age | < 20 years | 75/237 (31.6) | 162/217 (74.7) | 237/454 (52.2) |
21–40 years | 166/540 (30.7) | 385/477 (80.7) | 551/1017 (54.2) | |
41–60 years | 105/317 (33.1) | 294/381 (77.2) | 399/698 (57.2) | |
> 60 years | 45/134 (33.6) | 91/130 (70.0) | 136/264 (51.5) | |
Gender | Male | 168/558 (30.1) | 379/497 (76.3) | 547/1,055 (51.8) |
Female | 223/670 (33.3) | 553/708 (78.1) | 776/1378 (56.3) | |
Education | Graduate | 161/534 (30.1) | 307/344 (89.2) | 468/878 (53.3) |
Primary to high school* | 199/616 (32.3) | 552/745 (74.1) | 751/1361 (55.2) | |
Illiterate | 31/78 (39.7) | 73/116 (62.9) | 104/194 (53.6) | |
Occupation | Professional | 94/332 (28.3) | 170/182 (93.4) | 264/514 (51.4) |
Semi-professional | 31/109 (28.4) | 111/122 (91.0) | 142/231 (61.5) | |
Skilled worker | 71/214 (33.2) | 222/314 (70.7) | 293/528 (55.5) | |
Unskilled/daily wage laborers | 29/63 (46.0) | 71/111 (64.0) | 100/174 (57.5) | |
Housewife/unemployed/student | 166/510 (32.5) | 358/476 (75.2) | 524/985 (53.1) | |
Socioeconomic class | Upper | 41/197 (20.8) | 106/116 (91.4) | 147/313 (47.0) |
Middle | 188/554 (33.9) | 319/369 (86.4) | 507/923 (54.9) | |
Lower | 162/477 (34.0) | 507/720 (70.4) | 669/1197 (55.9) | |
Smoking habit | Smoker | 14/38 (36.8) | 0/0 (NA) | 14/38 (36.8) |
Non-smoker | 377/1190 (31.7) | 932/1205 (77.3) | 1309/2395 (54.7) | |
Alcohol Consumption | Alcohol consumer | 14/41 (34.1) | 2/2 (100.0) | 16/43 (37.2) |
Non-consumer | 377/1187 (31.8) | 930/1203 (77.3) | 1307/2390 (54.7) | |
Comorbidities | No comorbidities | 301/989 (30.4) | 749/976 (76.7) | 1050/1965 (53.4) |
Diabetes | 33/70 (47.1) | 56/72 (77.8) | 89/142 (62.7) | |
Hypertension | 28/70 (40.0) | 54/65 (83.1) | 82/135 (60.7) | |
Asthma/chronic obstructive pulmonary disease | 3/30 (10.0) | 12/14 (85.7) | 15/44 (34.1) | |
CAD/heart disease | 3/4 (75.0) | 6/8 (75.0) | 9/12 (75) | |
Any two or more comorbidities | 23/65 (35.4) | 55/70 (78.6) | 78/135 (57.8) | |
Presence of symptoms** | Yes | 120/339 (35.4) | 210/249 (84.3) | 330/588 (56.1) |
No | 271/889 (30.5) | 722/956 (75.5) | 993/1845 (53.8) | |
Close contact with confirmed cases | Yes | 102/320 (31.9) | 171/182 (94.0) | 273/502 (54.4) |
No | 289/908 (31.8) | 761/1023 (74.4) | 1050/1931 (54.4) | |
Mask usage in public places | Cloth | 218/645 (33.8) | 552/769 (71.8) | 770/1414 (54.5) |
Surgical | 148/473 (31.3) | 333/382 (87.2) | 481/855 (56.3) | |
N95 | 25/110 (22.7) | 47/54 (87.0) | 72/164 (43.9) |
- Kattula D
- Venugopal S
- Velusamy V
- Sarkar R
- Jiang V
- Mahasampath Gowri S
- et al.
Demographics | Categories | Univariate odds ratio (OR) (95 % confidence interval) | p-value | Multivariate (adjusted) OR (95% confidence interval) | p-value |
---|---|---|---|---|---|
Subpopulation | Rural | (ref) | (ref) | ||
Urban slum | 1.95 (1.52–2.49) | < 0.001 | 2.01 (1.57–2.59) | < 0.001 | |
Urban affluent | 1.51 (1.17–1.95) | 0.002 | 0.95 (0.65–1.39) | 0.786 | |
Healthcare workers | 2.13 (1.64–2.78) | < 0.001 | 1.472 (0.93–2.33) | 0.099 | |
Age | < 20 years | (ref) | |||
21–40 years | 1.13 (0.88–1.45) | 0.342 | |||
41–60 years | 1.10 (0.84–1.44) | 0.482 | |||
> 60 years | 0.93 (0.66–1.31) | 0.695 | |||
Gender | Male | (ref) | |||
Female | 1.14 (0.95–1.36) | 0.163 | |||
Education | Graduate | (ref) | |||
Primary to high school* | 0.76 (0.63–0.93) | 0.006 | 0.92 (0.66–1.29) | 0.641 | |
Illiterate | 0.62 (0.44–0.89) | 0.009 | 0.77 (0.48–1.25) | 0.295 | |
Occupation | Professional | (ref) | (ref) | ||
Semi-professional | 1.13 (0.79–1.60) | 0.516 | 0.85 (0.53–1.36) | 0.496 | |
Skilled worker | 0.70 (0.53–0.93) | 0.012 | 0.72 (0.42–1.23) | 0.223 | |
Unskilled/daily wage laborer | 0.69 (0.47–1.04) | 0.074 | 0.81 (0.43–1.53) | 0.510 | |
Housewife/unemployed/student | 1.81 (0.64–1.03) | 0.089 | 0.86 (0.51–1.47) | 0.584 | |
Socioeconomic class | Upper | (ref) | (ref) | ||
Middle | 1.39 (1.05–1.86) | 0.024 | 1.77 (1.17–2.67) | 0.007 | |
Lower | 0.90 (0.68–1.19) | 0.471 | 1.04 (0.59–1.83) | 0.900 | |
Smoking habit | Smoker | 1.25 (0.64–2.45) | 0.509 | ||
Non-smoker | (ref) | ||||
Alcohol consumption | Alcohol consumer | 1.16 (0.61–2.21) | 0.65 | ||
Non-consumer | (ref) | ||||
Comorbidities | No comorbidities | (ref) | (ref) | ||
Diabetes | 1.46 (1.03–2.08) | 0.034 | 1.72 (1.15–2.58) | 0.009 | |
Hypertension | 1.35 (0.94–1.93) | 0.101 | 1.75 (1.16–2.64) | 0.008 | |
Asthma/chronic obstructive pulmonary disease | 0.56 (0.28–1.13) | 0.104 | 0.49 (0.24–1.02) | 0.056 | |
CAD/heart disease | 2.21 (0.52–9.33) | 0.281 | 2.46 (0.59–10.23) | 0.216 | |
Any two or more comorbidities | 1.19 (0.79–1.76) | 0.395 | 1.46 (0.97–2.21) | 0.073 | |
Presence of symptoms**, | Yes | 1.09 (0.91–1.32) | 0.329 | ||
No | (ref) | ||||
Close contact with confirmed cases | Yes | 1.00 (0.82–1.22) | 0.998 | ||
No | (ref) | ||||
Mask usage (public places) | Cloth | (ref) | (ref) | ||
Surgical | 1.38 (1.13–1.28) | 0.001 | 1.15 (0.89–1.47) | 0.271 | |
N95 | 0.97 (0.67–1.39) | 0.868 | 0.80 (0.52–1.23) | 0.316 |
Discussion
- Papachristodoulou E
- Kakoullis L
- Parperis K
- Panos G.
- Adamoski D
- de Oliveira JC
- Bonatto AC
- Wassem R
- Nogueira MB
- Raboni SM
- et al.
- Singh BB
- Ward MP
- Lowerison M
- Lewinson RT
- Vallerand IA
- Deardon R
- et al.
Royo-Cebrecos, C, Vilanova, D., López, J, Arroyo, V., et al. Mass SARS-CoV-2 serological screening, a population-based study in the Principality of Andorra. The Lancet Regional Health — Europe 2021 May 20, 100119. doi:10.1016/j.lanepe.2021.100119.
- Feehan AK
- Denstel KD
- Katzmarzyk PT
- Velasco C
- Burton JH
- Price-Haywood EG
- Seoane L.
- Mora AM
- Lewnard JA
- Kogut K
- Rauch SA
- Hernandez S
- Wong MP
- Huen K
- Chang C
- Jewell NP
- Holland N
- Harris E
- Cuevas M
- Eskenazi B
- Miraglia JL
- NascimentoMonteiro C
- Giannecchini Romagnolo A
- Xavier Gomes R
- Pitangueiras Mangueira C
- Aparecida Rosseto-Welter E
- et al.
- Khan SMS
- Qurieshi MA
- Haq I
- Majid S
- Ahmad J
- Ayub T
- et al.
- Pei S
- Yamana TK
- Kandula S
- Galanti M
- Shaman J.
- Huang AT
- Garcia-Carreras B
- Hitchings MDT
- Yang B
- Katzelnick LC
- Rattigan SM
- et al.
- Patel AK
- Mukherjee S
- Leifels M
- Gautam R
- Kaushik H
- Sharma S
- et al.
- Wouters OJ
- Shadlen KC
- Salcher-Konrad M
- Pollard AJ
- Larson HJ
- Teerawattananon Y
- et al.
- Lumley SF
- Rodger G
- Constantinides B
- Sanderson N
- Chau KK
- Street TL
- O'Donnell D
- Howarth A
- Hatch SB
- Marsden BD
- Cox S
- James T
- Warren F
- Peck LJ
- Ritter TG
- de Toledo Z
- Warren L
- Axten D
- Cornall RJ
- Jones EY
- Stuart DI
- Screaton G
- Ebner D
- Hoosdally S
- Chand M
- Crook DW
- O'Donnell AM
- Conlon CP
- Pouwels KB
- Walker AS
- Peto TEA
- Hopkins S
- Walker TM
- Stoesser NE
- Matthews PC
- Jeffery K
- Eyre DW
Conclusion
Funding
Ethical approval
Declaration of Competing Interest
Acknowledgements
References
- SCB-UFPR COVID-19 team, 2. Large-scale screening of asymptomatic persons for SARS-CoV-2 variants of concern and gamma takeover.Brazil. Emerg Infect Dis. 2021; 27https://doi.org/10.3201/eid2712.211326
Anand A, Sandefur J, Subramanian A. Three new estimates of deaths in India during the pandemic. Center for Global Development. Jul 20, 2021. https://www.cgdev.org/blog/three-new-estimates-deaths-during-pandemic.
- Seasonal human coronavirus antibodies are boosted upon SARS-CoV-2 infection but not associated with protection.Cell. 2021; 184 (et al.) (1858–64.e10Epub 2021 Feb 9. PMID: 33631096; PMCID: PMC7871851)https://doi.org/10.1016/j.cell.2021.02.010
- Antigenic cross-reactivity between severe acute respiratory syndrome-associated coronavirus and human coronaviruses 229E and OC43.J Infect Dis. 2005; 191: 2033-2037https://doi.org/10.1086/430355
Covid19India.org (accessed on September 30, 2021 ).
- Performance assessment of seven SARS-CoV-2 IgG enzyme-linked immunosorbent assays.J Med Virol. 2021; (Jul 31:10.1002/jmv.27251. doi: 10.1002/jmv.27251. Epub ahead of print. PMID:34331713PMCID: PMC8426713)
- High rate of mutational events in SARS-CoV-2 genomes across Brazilian geographical regions, February 2020 to June 2021.Viruses. 2021; 13: 1806https://doi.org/10.3390/v13091806
- Covid-19: Two thirds in India carry antibodies, while research suggests country's death toll is 10 times official figure.BMJ. 2021; 374 (Jul 21): n1856https://doi.org/10.1136/bmj.n1856
- High seroprevalence of COVID-19 infection in a large slum in South India; what does it tell us about managing a pandemic and beyond?.Epidemiol Infect. 2021; 149: e39https://doi.org/10.1017/S0950268821000273
- High proportion of asymptomatic SARS-CoV-2 infections in 9 long-term care facilities, Pasadena, California, USA, April 2020.Emerg Infect Dis. 2020; 26: 2416-2419
- Community versus individual risk of SARS-CoV-2 infection in two municipalities of Louisiana, USA: an assessment of Area Deprivation Index (ADI) paired with seroprevalence data over time.PLoS One. 2021; 16e0260164https://doi.org/10.1371/journal.pone.0260164
- Clinical characterization and genomic analysis of samples from COVID-19 breakthrough infections during the second wave among the various states of India.Viruses. 2021; 13: 1782https://doi.org/10.3390/v13091782
- Coronavirus Pandemic (COVID-19).(—) OurWorldInData.org, 2020 (Published online atRetrieved from: ') (' [online resource])
- OC43 strain-related coronavirus antibodies in different age groups.J Med Virol. 1979; 3: 313-320https://doi.org/10.1002/jmv.1890030410
- A systematic review of antibody mediated immunity to coronaviruses: kinetics, correlates of protection, and association with severity.Nat Commun. 2020; 11 (PMID:32943637PMCID: PMC7499300): 4704https://doi.org/10.1038/s41467-020-18450-4
JHU CSSE Coronavirus COVID-19 Global Cases: https://arcg.is/0fHmTX (accessed on August 31, 2021).
- Measuring poverty in southern India: a comparison of socio-economic scales evaluated against childhood stunting.PLoS ONE. 2016; 11e0160706https://doi.org/10.1371/journal.pone.0160706
- Seroprevalence of SARS-CoV-2-specific IgG antibodies in Kashmir, India, 7 months after the first reported local COVID-19 case: results of a population-based seroprevalence survey from October to November 2020.BMJ Open. 2021; 11e053791https://doi.org/10.1136/bmjopen-2021-053791
- Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection.Nat Med. 2021; 27: 1205-1211https://doi.org/10.1038/s41591-021-01377-8
- ICMR-RMRC [OdiSHA-COVID-19] Serosurvey Team. Serological surveys to inform SARS-CoV-2 epidemic curve: a cross-sectional study from Odisha, India.Sci Rep. 2021; 11: 10551https://doi.org/10.1038/s41598-021-89877-y
- SARS-CoV-2 infection and mortality during the first epidemic wave in Madurai, south India: a prospective, active surveillance study.Lancet Infect Dis. 2021; S1473-3099: 00393-00395https://doi.org/10.1016/S1473-3099(21)00393-5
- Immunoreactivity characterisation of the three structural regions of the human coronavirus OC43 nucleocapsid protein by Western blot: implications for the diagnosis of coronavirus infection.J Virol Methods. 2013; 187: 413-420https://doi.org/10.1016/j.jviromet.2012.11.009
- An observational cohort study on the incidence of SARS-CoV-2 infection and B.1.1.7 variant infection in healthcare workers by antibody and vaccination status.Clin Infect Dis. 2021; : ciab608https://doi.org/10.1093/cid/ciab608
- Seroprevalence of SARS-CoV-2 in slums versus non-slums in Mumbai, India.Lancet Glob Health. 2021; 9: e110-e1e1https://doi.org/10.1016/S2214-109X(20)30467-8
- A seroprevalence survey of anti-SARS-CoV-2 antibodies among individuals 18 years of age or older living in a vulnerable region of the city of São Paulo, Brazil.PLoS One. 2021; 16e0255412https://doi.org/10.1371/journal.pone.0255412
- CHAMACOS-Project-19 Study Team. Risk factors associated with SARS-CoV-2 infection among farmworkers in Monterey County, California.JAMA Netw Open. 2021; 4e2124116https://doi.org/10.1001/jamanetworkopen.2021.24116
- SARS-CoV-2 seroprevalence among the general population and healthcare workers in India, December 2020–January 2021.Int J Infect Dis. 2021; 108: 145-155https://doi.org/10.1016/j.ijid.2021.05.040
- Prevalence of asymptomatic SARS-CoV-2 infection: a narrative review.Ann Intern Med. 2020; 173 (Epub 2020 Jun 3. PMID:32491919PMCID: PMC7281624): 362-367https://doi.org/10.7326/M20-3012
- Long-term and herd immunity against SARS-CoV-2: implications from current and past knowledge.Pathog Dis. 2020; 78 (ftaa025)https://doi.org/10.1093/femspd/ftaa025
- Mega festivals like MahaKumbh, a largest mass congregation, facilitated the transmission of SARS-CoV-2 to humans and endangered animals via contaminated water.Int J Hyg Environ Health. 2021; 237113836https://doi.org/10.1016/j.ijheh.2021.113836
- Burden and characteristics of COVID-19 in the United States during 2020.Nature. 2020; (Aug 26)https://doi.org/10.1038/s41586-021-03914-4
- Estimating the wave 1 and wave 2 infection fatality rates from SARS-CoV-2 in India.BMC Res Notes. 2021; 14: 262https://doi.org/10.1186/s13104-021-05652-2
- Seroprevalence and risk factors of exposure to COVID-19 in homeless people in Paris, France: a cross-sectional study.Lancet Public Health. 2021; 6: e202-e2e9https://doi.org/10.1016/S2468-2667(21)00001-3
- Low-income countries are more immune to COVID-19: a misconception.Indian Journal of Medical Sciences. 2020; 72: 5-7https://doi.org/10.25259/IJMS_26_2020
Royo-Cebrecos, C, Vilanova, D., López, J, Arroyo, V., et al. Mass SARS-CoV-2 serological screening, a population-based study in the Principality of Andorra. The Lancet Regional Health — Europe 2021 May 20, 100119. doi:10.1016/j.lanepe.2021.100119.
- COVID-19 infection in India: a comparative analysis of the second wave with the first wave.Pathogens. 2021; 10: 1222https://doi.org/10.3390/pathogens10091222
- Meta-analysis and adjusted estimation of COVID-19 case fatality risk in India and its association with the underlying comorbidities.One Health. 2021; 13100283https://doi.org/10.1016/j.onehlt.2021.100283
- Cross-reactive serum and memory B-cell responses to spike protein in SARS-CoV-2 and endemic coronavirus infection.Nat Commun. 2021; 12: 2938https://doi.org/10.1038/s41467-021-23074-3
- Age-specific prevalence of complement-fixing antibodies to sixteen viral antigens: a computer analysis of 58,500 patients covering a period of eight years.J Med Virol. 1984; 13: 131-148https://doi.org/10.1002/jmv.1890130204
- COVID-19 in India: Moving from containment to mitigation.Indian J Med Res. 2020; 151: 136-139https://doi.org/10.4103/ijmr.IJMR_860_20
- Estimates and determinants of SARS-Cov-2 seroprevalence and infection fatality ratio using latent class analysis: the population-based Tirschenreuth study in the hardest-hit German county in spring 2020.Viruses. 2021; 13: 1118https://doi.org/10.3390/v13061118
- Challenges in ensuring global access to COVID-19 vaccines: production, affordability, allocation, and deployment.Lancet. 2021; 397 (Epub 2021 Feb 12. PMID:33587887PMCID: PMC7906643): 1023-1034https://doi.org/10.1016/S0140-6736(21)00306-8
- The SARS-CoV-2 outbreak: what we know.Int J Infect Dis. 2020; 94 (Epub 2020 Mar 12. PMID:32171952PMCID: PMC7102543): 44-48https://doi.org/10.1016/j.ijid.2020.03.004
- Estimating the infection-fatality risk of SARS-CoV-2 in New York City during the spring 2020 pandemic wave: a model-based analysis.Lancet Infect Dis. 2021; 21: 203-212https://doi.org/10.1016/S1473-3099(20)30769-6
Article info
Publication history
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy