Characteristics and Outcomes of COVID-19 in Reproductive-Aged Pregnant and Non-Pregnant Women in Osaka, Japan

Ling Zha, Tomotaka Sobue, Atsushi Hirayama, Taro Takeuchi, Kenta Tanaka, Yusuke Katayama, Sho Komukai, Takeshi Shimazu, Tetsuhisa Kitamura, on behalf of the COVID-19 Epidemiology Research Group of Osaka University

PII: S1201-9712(22)00063-7
DOI: https://doi.org/10.1016/j.ijid.2022.01.054
Reference: IJID 5976

To appear in: International Journal of Infectious Diseases

Received date: 6 October 2021
Revised date: 20 January 2022
Accepted date: 26 January 2022

Please cite this article as: Ling Zha, Tomotaka Sobue, Atsushi Hirayama, Taro Takeuchi, Kenta Tanaka, Yusuke Katayama, Sho Komukai, Takeshi Shimazu, Tetsuhisa Kitamura, on behalf of the COVID-19 Epidemiology Research Group of Osaka University, Characteristics and Outcomes of COVID-19 in Reproductive-Aged Pregnant and Non-Pregnant Women in Osaka, Japan, International Journal of Infectious Diseases (2022), doi: https://doi.org/10.1016/j.ijid.2022.01.054

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Highlights

- There were 4,156 COVID-19 notifications in females aged 10–49 years.

- Of the 4,156 notifications, 29 (0.7%) were pregnant women.

- All pregnant women had mild or asymptomatic disease.

- Among women with COVID-19, pregnant women were more likely to be hospitalized.

- There were no intensive care unit admissions and no deaths due to COVID-19.
Characteristics and Outcomes of COVID-19 in Reproductive-Aged Pregnant and Non-Pregnant Women in Osaka, Japan

Ling Zha, PhD, MPH¹; Tomotaka Sobue, MD, PhD¹; Atsushi Hirayama, MD, MPH²; Taro Takeuchi, MD¹; Kenta Tanaka, BSc¹; Yusuke Katayama, MD, PhD³; Sho Komukai, PhD⁴; Takeshi Shimazu, MD, PhD³; Tetsuhisa Kitamura, MD, DPH¹; on behalf of the COVID-19 Epidemiology Research Group of Osaka University

Affiliations:

¹ Environmental Medicine and Population Sciences, Department of Social Medicine, Graduate School of Medicine, Osaka University, Suita, Japan

² Public Health, Department of Social Medicine, Graduate School of Medicine, Osaka University, Suita, Japan

³ Traumatology and Acute Critical Medicine, Department of Acute Critical Medicine, Graduate School of Medicine, Osaka University, Suita, Japan

⁴ Biomedical Statistics, Department of Integrated Medicine, Graduate School of Medicine, Osaka University, Suita, Japan

Correspondence to: Ling Zha, PhD, MPH
Environmental Medicine and Population Sciences, Department of Social Medicine, Graduate School of Medicine, Osaka University

Address: 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan

Phone: +81-6-6879-3922; Fax: +81-6-6879-3929

E-mail: sarin@envi.med.osaka-u.ac.jp

E-mail addresses

Ling Zha, PhD, MPH: sarin@envi.med.osaka-u.ac.jp

Tomotaka Sobue, MD, PhD: tsobue@envi.med.osaka-u.ac.jp

Atsushi Hirayama, MD: atsushihirayama.md@gmail.com

Taro Takeuchi, MD: tarogauss106072@gmail.com

Kenta Tanaka, BSc: tanaken.0414@gmail.com

Yusuke Katayama, MD, PhD: orion13@hp-emerg.med.osaka-u.ac.jp

Sho Komukai, PhD: skomukai@biostat.med.osaka-u.ac.jp

Takeshi Shimazu, MD, PhD: shimazu@hp-emerg.med.osaka-u.ac.jp

Tetsuhisa Kitamura, MD, DPH: lucky_unatan@yahoo.co.jp
Abstract

Objective: To describe the clinical characteristics and outcomes of reproductive-aged female patients with coronavirus disease 2019 (COVID-19).

Methods: We conducted a retrospective study of female patients aged 10–49 years notified with COVID-19 in Osaka, Japan, between January and November 2020. We assessed their epidemiological and clinical characteristics according to their pregnancy status.

Results: A total of 4,156 patients were enrolled, of whom 29 (0.7%) were pregnant. Most patients exhibited mild symptoms, and 10.8% of the cases were asymptomatic. No moderate or severe cases were observed in pregnant women, while only 0.1% of the non-pregnant women had severe disease at diagnosis. No clusters were observed in the pregnant patients; however, most acquired the infection from a family member. Of the 29 pregnant women, 22 (75.9%) were hospitalized, while among the non-pregnant women, 579 (14.0%) were hospitalized (P < 0.001). No patients were admitted to the intensive care unit, and there were no deaths among women aged 10–49 years.

Conclusions: Pregnant women accounted for 0.7% of the total cases of COVID-19 among women aged 10–49 years. Pregnant women were more likely to be hospitalized but generally had mild disease.

Keywords

COVID-19, reproductive-aged women, pregnant women, epidemiology
Abbreviations

COVID-19, coronavirus disease 2019

ICU, intensive care unit

SARS-CoV-2, severe acute respiratory syndrome coronavirus 2

Introduction

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was first reported in Wuhan, China (Li et al., 2020, Zhou et al., 2020), and rapidly spread worldwide, imposing a major burden on healthcare systems globally. Pregnant women are considered to be at a higher risk of severe morbidity and mortality from other respiratory infections such as influenza or SARS (Allotey et al., 2020, Blitz et al., 2020, Vintzileos et al., 2020, Xu et al., 2020) than non-pregnant women. COVID-19 has caused serious concerns about its potential to cause adverse events and poor outcomes in pregnant women. A high incidence of obstetric complications has been reported in pregnant women infected with COVID-19 (Sahin et al., 2021). Preterm delivery is the most common obstetric complication, followed by miscarriage. While the effect of COVID-19 on miscarriage has not been confirmed, the majority of previous studies have reported an increased rate of preterm delivery (Chmielewska et al., 2021, Dey et al., 2021,
Concerning the immunology of SARS-CoV-2 infection in pregnant women, investigations have shown an increase in anti-SARS-CoV-2 IgM and IgG antibodies in infected pregnant women. The elevation in IgM and IgG antibodies in pregnant SARS-CoV-2 patients may be due to an aggressive immunological response, including cytokine storm (Chaubey et al., 2021, Dong et al., 2020, Iyer et al., 2020). The cytokine storm is a burst of inflammatory cytokine molecules that causes the human body to attack its own cells and tissues, leading to a variety of adverse health problems (Dhama et al., 2020, Fenizia et al., 2020, Narang et al., 2020, Soy et al., 2020). SARS-CoV-2 infection led to an increase in COVID-19 disease severity from mild to severe in pregnant women and intermittent death depending on the extent of cellular and tissue damage caused by the cytokine storm (Chaubey et al., 2021). Considering the particulars of immune status and physiological features in pregnant women, there is a need to investigate the differences in the clinical characteristics and severity of COVID-19 between pregnant and non-pregnant women, and the potential impact of SARS-CoV-2 infection on the clinical outcomes of the fetus and neonate.

SARS-CoV-2 infection has been reported to be more severe in pregnant women than in non-pregnant women (Villar et al., 2021). Studies conducted in the United States and France have shown that pregnancy is a risk factor for severe disease and that COVID-19 during pregnancy may increase the risk of preterm birth, but that the mortality rate among
pregnant women is similar to that of non-pregnant women of the same age (Ellington et al., 2020, Kayem et al., 2020). In contrast, some studies from China showed that the clinical manifestations and characteristics of COVID-19 in pregnant women were similar to those of non-pregnant women (Cheng et al., 2020, Wei et al., 2020, Xu et al., 2020, Yu et al., 2020). In spite of the growing number of studies on pregnant women with COVID-19 worldwide, it is still unclear whether the disease severity and death rate in reproductive-aged women with SARS-CoV-2 infection vary according to pregnancy status (Godoi et al., 2021).

In Japan, the first laboratory-confirmed COVID-19 case was detected on January 16, 2020. Subsequently, the first laboratory-confirmed COVID-19 case in Osaka Prefecture was detected on January 29, 2020. As of September 30, 2021, a total of 1,696,936 patients with laboratory-confirmed COVID-19 were identified nationwide and a total of 199,553 patients was identified in Osaka Prefecture (Ministry of Health, 2021a). However, few studies have described the COVID-19 epidemic in reproductive-aged women in Japan, specifically comparing pregnant and non-pregnant women (Katayama et al., 2021, Tanaka et al., 2021, Zha et al., 2021). To address this knowledge gap, we conducted a retrospective observational study of pregnant and non-pregnant reproductive-aged women with COVID-19 in Osaka, Japan.

Methods
Study design and setting

We conducted a retrospective observational study of COVID-19 in the Osaka Prefecture, Japan among reproductive-aged women between January 2020 and November 2020. The details of the data collection are described elsewhere (Hirayama et al., 2021, Zha et al., 2021). In accordance with the Infectious Diseases Control Law, the Osaka Prefecture Government conducted an active epidemiological investigation to collect epidemiological data on patients with COVID-19 using a uniform data-collection system (Government, 2020b, Ministry of Health, 2021b). Among COVID-19 patients who were registered in the system by the end of November 2020 and whose follow-up was completed, we focused on women of reproductive age who were pregnant or not. Therefore, not all the cases in November 2020 were included.

Information on COVID-19 patients was collected, including sex, age group, city of residence, presence of comorbidities, disease severity at diagnosis, date of symptom onset, surge, cluster, close contacts, hospital admission, date of hospital admission, date of discharge, status at discharge (alive or death), date of death, and treatment (including oxygen therapy, mechanical ventilation, renal replacement therapy, intensive care unit [ICU] admission, and extracorporeal membrane oxygenation). Age was classified in 10-year intervals as the Osaka Prefecture Government withheld precise age information in order to protect the privacy of COVID-19 patients. Accordingly, we designated reproductive-aged
women as those aged 10–49 years old in the present study. The period until June 13, 2020 was considered to be the first surge, followed by the second surge between June 14 and October 9, 2020 and the third surge thereafter (Government, 2020a). A cluster was defined as a group of five or more individuals who tested positive for SARS-CoV-2 and had an epidemiological relationship to the index patient (Diseases, 2021). The local public health centers defined close contacts as those who examined, nursed, or cared for the patient without protective equipment; lived with or had prolonged contact with the patient; had contact with the patient without protection for longer than 15 minutes at a distance of less than 1 meter, or was directly exposed to contaminated materials (Diseases, 2021). Disease severity at diagnosis were categorized as mild, moderate, or severe (Ministry of Health, 2021b). The date of symptom onset was defined as the date on which the first symptoms were reported (Takeuchi et al., 2020a, Takeuchi et al., 2020b). In cases where the date of symptom onset was unknown, we used the date of medical treatment, hospital admission, or any change in symptoms, whichever occurred first.

This study was approved by the Osaka University Hospital Ethical Review Committee (reference no. 20397). The informed consent requirement was waived.

Statistical analysis

Categorical variables were reported as frequencies and proportions, and continuous
variables were reported as the median and interquartile range (IQR). Pearson's chi-square test was used to compare categorical variables, and the Wilcoxon rank-sum test was used to compare continuous variables between pregnant and non-pregnant women. All tests were two-tailed, and statistical significance was defined as a P value of < 0.05. Statistical analyses were performed using Stata version 16 (StataCorp. 2015, College Station, TX, USA).

Results

Eligible patients

Of the 14,864 patients with COVID-19, 4156 (28.0%) were reproductive-aged female patients, of whom 29 (0.7%) were pregnant and 4127 (99.3%) were non-pregnant (Figure 1).

Patient epidemiological characteristics

Table 1 shows the baseline epidemiological characteristics of the reproductive-aged female patients with COVID-19. Approximately half of the non-pregnant women (47.7%) and pregnant women (48.3%) were aged 20–29 years old. The age distribution differed significantly according to pregnancy status ($P=0.035$). The prevalence of comorbidities was similar in pregnant and non-pregnant women (6.9% and 8.7%, respectively). The most common disease severity at the time of diagnosis was mild (3564 cases, 85.8%), followed by asymptomatic (448 cases, 10.8%). No moderate or severe cases was observed in the pregnant
women, whereas 0.1% of non-pregnant patients had severe disease at the time of diagnosis. No clusters were seen among pregnant women, while 4.2% of non-pregnant women were part of a cluster. More than half of the pregnant women were considered close contacts (17 cases, 58.6%), compared to approximately one-third in the non-pregnant group (1344 cases, 32.6%; P=0.003). Of the 29 pregnant women, 22 (75.9%) were hospitalized, while among the non-pregnant women, 579 (14.0%) were hospitalized (P < 0.001).

Figure 2 shows the distribution of gestational weeks among pregnant women with COVID-19. The number of pregnant patients were evenly distributed in the first, second and third trimesters of gestation. The median gestation was 19 weeks among those with a known gestation.

Clinical features

Table 2 shows the clinical characteristics of the hospitalized reproductive-aged female patients. The median number of days from onset to hospitalization was 6 days (IQR: 3–8 days). The median length of hospital stay was 9 days (IQR: 7–13 days) in total. The time from onset to hospitalization and the length of hospital stay did not differ significantly according to pregnancy status. One patient received oxygen therapy, but none received mechanical ventilation, renal replacement therapy, or extracorporeal membrane oxygenation, and there were no ICU admissions or deaths in reproductive-aged female patients. No severe
diseases or deaths were observed despite pregnancy status.

Discussion

This is a population-based retrospective study to report the characteristics and outcomes of COVID-19 among reproductive-aged female patients in Osaka Prefecture, Japan. The proportion of pregnant women with COVID-19 was < 1%. Most reproductive-aged female patients exhibited mild symptoms, and the proportion of asymptomatic patients was approximately one-tenth of the total patients. No moderate or severe cases was observed in pregnant women, while only 0.1% of severe cases were seen in non-pregnant women at diagnosis. No clusters were observed in pregnant patients; however, most of them acquired infection from a family member. Although approximately three-quarters of the pregnant women were hospitalized, only a few of the patients were hospitalized in the non-pregnant group. Moreover, no ICU admissions or deaths were observed in reproductive-aged female patients. This study provides information on the actual situation of SARS-CoV-2 infection among reproductive-aged female patients. This information could be used to help prevent its transmission.

The majority of pregnant women in this study were 30–39 years old, which is reflective of the average age of pregnant women in Japan (over 30 years old) (Statistics Bureau, 2019). Regarding the transmission route, there were no clusters among pregnant
women with COVID-19. This may be because pregnant women generally follow the government recommendations to stay alert and safe and avoid going out unnecessarily during the COVID-19 pandemic in Japan. Conversely, the proportion of pregnant patients who acquired the infection from a close contact was approximately 1.5 times higher than that in non-pregnant women. As pregnant women are more likely to stay at home, the most likely source of infection in pregnant women is a family member. Therefore, in order to protect pregnant women from infection, in addition to self-prevention, measures should also be taken to prevent infection in their families.

The high proportion of hospitalization in pregnant patients indicates that considering the specific situation in pregnant women, most pregnant patients were admitted to the hospital for observation in Osaka, Japan. In this study, none of pregnant women with COVID-19 required intensive care admission or ventilatory support. Previous studies on hospitalized pregnant women with COVID-19 have shown that the proportion of cases requiring mechanical ventilator or ICU care was 1.5% to 7.6% (Elshafeey et al., 2020, Salem et al., 2021). Furthermore, no deaths were observed among the reproductive-aged female patients in the present study. This result is similar to that in studies from China, which reported death rates of 0–1.5% in pregnant women with COVID-19 (Cheng et al., 2020, Wei et al., 2020, Xu et al., 2020, Yu et al., 2020). Further observational studies are required to determine whether there are regional differences in the severity of COVID-19 and mortality.
rates among pregnant women with COVID-19. Understanding of the effect of SARS-CoV-2 infection, particularly its effect on pregnant women and neonates, is still insufficient. Further research is required to provide an evidence-based foundation for the medical management of pregnant patients with COVID-19.

Currently, the COVID-19 vaccination is being administered globally. As research institutes and pharmaceutical companies around the world are still conducting clinical trials on drugs that are expected to treat the SARS-CoV-2 infection, vaccination is a proven method of controlling the COVID-19 pandemic. Pregnant women were initially excluded from active vaccination because the safety of the vaccine had not been established. However, many pregnant women have been vaccinated in other countries, and the severity and frequency of adverse reactions are comparable to those seen by non-pregnant women, with no fatal adverse events reported in either the fetus or mother (Goncu Ayhan et al., 2021, Sukarno et al.). In Japan, the three societies, including the Japan Society of Obstetrics and Gynecology, Japan Association of Obstetricians and Gynecologists, and Japan Society for Infectious Diseases in Obstetrics and Gynecology, issued a "Notice on COVID-19 Vaccination" for pregnant and nursing women, declaring that pregnant women are encouraged to have the vaccine, as are their husbands or partners (Gynecology, 2021). In the USA, the American College of Obstetricians and Gynecologists (ACOG) and the Society for Maternal-Fetal Medicine (SMFM) have issued comments strongly recommending that all pregnant women be
vaccinated against COVID-19, both at term and after delivery, to avoid the risk of infection, severe illness, and death (SMFM, 2021). Given the scarcity of available drugs for pregnant women infected with COVID-19, strict and active infection prevention, including vaccination, is essential.

This study has some limitations. First, the dataset does not include information on delivery and fetal outcomes in pregnant women with COVID-19. Second, because this study analyzed epidemiological data collected by public health centers in accordance with the Infectious Diseases Control Law, specific information on comorbidities and medications was not available. Third, the data provided by Osaka Prefecture did not include all cases. In this context, the number of cases, treatment, and other information available on the Osaka Prefecture website is different from ours. Despite these limitations, this study provides important basic epidemiological information on COVID-19 among women of reproductive age in Osaka Prefecture.

Conclusions

We reveal the characteristics and outcomes of reproductive-aged female patients with COVID-19 using a comprehensive registry encompassing the whole Osaka Prefecture in Japan. Pregnant women accounted for 0.7% of the total cases of COVID-19 among women of reproductive age, and there were no deaths observed in pregnant or non-pregnant women.
This study provides a baseline for long-term monitoring of COVID-19 among women of reproductive age in Osaka Prefecture.

Author contributions

LZ and TK conceived the study design. LZ and KT drafted the manuscript. LZ performed statistical analyses. TSo, AH, TT, TK, YK, SK and TSh input their clinical expertise and critically revised the manuscript. All authors approved the version for publication. TK supervised the whole manuscript.

Funding

None.

Conflict of Interest

All authors declare no conflict of interest.

Acknowledgments

We thank all the staff members of the Osaka Prefectural Government and public health centers in Osaka for their efforts in collecting the data used in the study, and all the medical staff who treated COVID-19 patients. We also thank our colleagues from the Osaka
University Center of Medical Data Science and Advanced Clinical Epidemiology
Investigator’s Research Project for providing their insights and expert advice to help improve
our research.

Ethical Approval

This study has been approved by the Research Ethics Committee of Osaka University
(Approval No. 20397).

References

risk factors, and maternal and perinatal outcomes of coronavirus disease 2019 in pregnancy:
living systematic review and meta-analysis. bmj 2020;370.

Gynecology JSoOaGJaOaGJSfIDoA. Notice on COVID-19 Vaccination (2nd Version).

Table 1. Epidemiological characteristics of reproductive-aged pregnant and non-pregnant women in Osaka Prefecture, Japan

<table>
<thead>
<tr>
<th>Factor</th>
<th>Total</th>
<th>Pregnant</th>
<th>Not pregnant</th>
<th>P-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N (%)</td>
<td>N (%)</td>
<td>N (%)</td>
<td></td>
</tr>
<tr>
<td>No. of patients</td>
<td>4,156 (100.0)</td>
<td>29 (100.0)</td>
<td>4,127 (100.0)</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td>0.035</td>
</tr>
<tr>
<td>10-19 years old</td>
<td>399 (9.6)</td>
<td>1 (3.4)</td>
<td>398 (9.6)</td>
<td></td>
</tr>
<tr>
<td>20-29 years old</td>
<td>1,982 (47.7)</td>
<td>14 (48.3)</td>
<td>1968 (47.7)</td>
<td></td>
</tr>
<tr>
<td>30-39 years old</td>
<td>923 (22.2)</td>
<td>12 (41.4)</td>
<td>911 (22.1)</td>
<td></td>
</tr>
<tr>
<td>40-49 years old</td>
<td>852 (20.5)</td>
<td>2 (6.9)</td>
<td>850 (20.6)</td>
<td></td>
</tr>
<tr>
<td>Geographic area</td>
<td></td>
<td></td>
<td></td>
<td>0.061</td>
</tr>
<tr>
<td>Osaka City</td>
<td>2,375 (57.1)</td>
<td>10 (34.5)</td>
<td>2365 (57.3)</td>
<td></td>
</tr>
<tr>
<td>Other areas in Osaka Prefecture</td>
<td>1,709 (41.1)</td>
<td>19 (65.5)</td>
<td>1690 (40.9)</td>
<td></td>
</tr>
<tr>
<td>Outside Osaka Prefecture</td>
<td>65 (1.6)</td>
<td>0 (0.0)</td>
<td>65 (1.6)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>7 (0.2)</td>
<td>0 (0.0)</td>
<td>7 (0.2)</td>
<td></td>
</tr>
<tr>
<td>Comorbidities</td>
<td></td>
<td></td>
<td></td>
<td>0.738</td>
</tr>
<tr>
<td>No</td>
<td>3,797 (91.4)</td>
<td>27 (93.1)</td>
<td>3770 (91.3)</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>359 (8.6)</td>
<td>2 (6.9)</td>
<td>357 (8.7)</td>
<td></td>
</tr>
<tr>
<td>Disease severity at diagnosis</td>
<td></td>
<td></td>
<td></td>
<td>0.899</td>
</tr>
<tr>
<td>Asymptomatic</td>
<td>448 (10.8)</td>
<td>3 (10.3)</td>
<td>445 (10.8)</td>
<td></td>
</tr>
<tr>
<td>Mild</td>
<td>3,564 (85.8)</td>
<td>26 (89.7)</td>
<td>3538 (85.7)</td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td>3 (0.1)</td>
<td>0 (0.0)</td>
<td>3 (0.1)</td>
<td></td>
</tr>
<tr>
<td>Severe</td>
<td>3 (0.1)</td>
<td>0 (0.0)</td>
<td>3 (0.1)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>138 (3.3)</td>
<td>0 (0.0)</td>
<td>138 (3.3)</td>
<td></td>
</tr>
<tr>
<td>Surge</td>
<td></td>
<td></td>
<td></td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>(Proportion)</td>
<td>Yes</td>
<td>(Proportion)</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------</td>
<td>--------------</td>
<td>----------</td>
<td>--------------</td>
</tr>
<tr>
<td>First (~ Jun. 13)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cluster</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical institution</td>
<td>3,983</td>
<td>(95.8)</td>
<td>29</td>
<td>(100.0)</td>
</tr>
<tr>
<td>University</td>
<td>77</td>
<td>(1.9)</td>
<td>0</td>
<td>(0.0)</td>
</tr>
<tr>
<td>School</td>
<td>7</td>
<td>(0.2)</td>
<td>0</td>
<td>(0.0)</td>
</tr>
<tr>
<td>Child facility</td>
<td>10</td>
<td>(0.2)</td>
<td>0</td>
<td>(0.0)</td>
</tr>
<tr>
<td>Close contact</td>
<td>2,795</td>
<td>(67.3)</td>
<td>12</td>
<td>(41.4)</td>
</tr>
<tr>
<td>Close contact</td>
<td>2,795</td>
<td>(67.3)</td>
<td>12</td>
<td>(41.4)</td>
</tr>
<tr>
<td>Hospitalization</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>3,497</td>
<td>(84.1)</td>
<td>7</td>
<td>(24.1)</td>
</tr>
<tr>
<td>Yes</td>
<td>601</td>
<td>(14.5)</td>
<td>22</td>
<td>(75.9)</td>
</tr>
<tr>
<td>Unknown</td>
<td>58</td>
<td>(1.4)</td>
<td>0</td>
<td>(0.0)</td>
</tr>
</tbody>
</table>

* Groups compared using Pearson’s chi-square test.
Table 2. Clinical characteristics of hospitalized reproductive-aged pregnant and non-pregnant women in Osaka Prefecture, Japan

<table>
<thead>
<tr>
<th>Factor</th>
<th>Total</th>
<th>Pregnant</th>
<th>Not pregnant</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of hospitalized patients</td>
<td>601</td>
<td>22</td>
<td>579</td>
<td></td>
</tr>
<tr>
<td>Days to hospitalization, median (IQR)†</td>
<td>6</td>
<td>(4, 9)</td>
<td>5</td>
<td>(3, 8)</td>
</tr>
<tr>
<td>Length of hospital stay, median (IQR)‡</td>
<td>9</td>
<td>(7, 14)</td>
<td>9</td>
<td>(7, 13)</td>
</tr>
<tr>
<td>Oxygen therapy, n (%)</td>
<td>23</td>
<td>(3.8)</td>
<td>1</td>
<td>(4.6)</td>
</tr>
<tr>
<td>Mechanical ventilator, n (%)†</td>
<td>3</td>
<td>(0.5)</td>
<td>0</td>
<td>(0.0)</td>
</tr>
<tr>
<td>Intensive care unit, n (%)</td>
<td>3</td>
<td>(0.5)</td>
<td>0</td>
<td>(0.0)</td>
</tr>
<tr>
<td>Renal replacement therapy, n (%)</td>
<td>0</td>
<td>(0.0)</td>
<td>0</td>
<td>(0.0)</td>
</tr>
<tr>
<td>Extracorporeal membrane oxygenation, n (%)</td>
<td>0</td>
<td>(0.0)</td>
<td>0</td>
<td>(0.0)</td>
</tr>
<tr>
<td>Death, n (%)</td>
<td>0</td>
<td>(0.0)</td>
<td>0</td>
<td>(0.0)</td>
</tr>
</tbody>
</table>

Abbreviations: IQR, interquartile range; NA, not available.

* Groups compared using Wilcoxon rank-sum test.
† Groups compared using Pearson’s chi-square test.
‡ Number of individuals with missing data on the following variables: days to hospitalization n=3; length of hospital stay n=13.
§ Mechanical ventilator including non-invasive positive-pressure ventilation.
Figure Legend

Figure 1. Patient flowchart
Legend: Of the 14,846 patients with COVID-19, 4156 (8.4%) were reproductive-aged female patients, of whom 29 (0.7%) were pregnant and 4127 (99.3%) were non-pregnant.
Figure 2. Distribution of gestational weeks among pregnant women with COVID-19

Legend: Figure 2 shows the distribution of gestational weeks among pregnant women with COVID-19. The number of pregnant patients were evenly distributed in the first, second and third trimesters of gestation. The median gestation was 19 weeks among those with a known gestation.