Advertisement
Research Article| Volume 120, P68-76, July 2022

Download started.

Ok

Multiplex polymerase chain reaction typing scheme based on Escherichia coli O157:H7 Sakai prophage (Sp)-associated genes

  • István Tóth
    Affiliations
    Veterinary Medical Research Institute, Hungária krt. 21., H-1143, Budapest, Hungary
    Search for articles by this author
  • Author Footnotes
    1 Present address: Graduate School of Environment Department of Industrial and Environmental Engineering, Gachon University, Seongnam, 13120, Republic of Korea
    Eva Bagyinszky
    Footnotes
    1 Present address: Graduate School of Environment Department of Industrial and Environmental Engineering, Gachon University, Seongnam, 13120, Republic of Korea
    Affiliations
    Veterinary Medical Research Institute, Hungária krt. 21., H-1143, Budapest, Hungary
    Search for articles by this author
  • Domonkos Sváb
    Correspondence
    Corresponding author. Phone and fax no.: +36 1 252 2455
    Affiliations
    Veterinary Medical Research Institute, Hungária krt. 21., H-1143, Budapest, Hungary
    Search for articles by this author
  • Author Footnotes
    1 Present address: Graduate School of Environment Department of Industrial and Environmental Engineering, Gachon University, Seongnam, 13120, Republic of Korea
Open AccessPublished:April 13, 2022DOI:https://doi.org/10.1016/j.ijid.2022.04.015

      Abstract

      Objectives

      Escherichia coli strains of the O157 serogroup include significant foodborne pathogens: enterohemorrhagic E. coli (EHEC) and enteropathogenic E. coli, which are responsible for a considerable number of hospitalizations and deaths worldwide each year. There is a constant need for rapid, reliable, and easy-to-use methods for their identification, typing, and phylogenetic classification. In this study, we proposed a new multiplex polymerase chain reaction (PCR)–based typing system for pathogenic E. coli, focusing on the O157 serogroup.

      Methods

      We designed primers targeting 12 lambdoid prophage regions carried by the prototypic polylysogenic strain of EHEC, the O157:H7 Sakai strain. The reactions were tested in vitro as well as in silico with the PubMLST database.

      Results

      The PCR assays can be grouped into four multiplex reactions, and their results can be given as a four-digit code. In vitro and in silico testing showed that these Sakai prophage regions are prevalent not only in E. coli O157 strains but also in Shiga toxigenic E. coli non-O157 strains and the method provides appropriate resolution.

      Conclusions

      The proposed method could be a valuable tool in epidemiologic tracing and preliminary phylogenetic grouping of this diverse group of pathogens.

      Keywords

      1. Introduction

      Intestinal pathogenic Escherichia coli strains of the O157 serogroup include the most notorious pathogenic strains of the enterohemorrhagic (EHEC) pathotype () as well as strains of enteropathogenic E. coli (EPEC) and strains with atypical virulence arrays (
      • Tóth I
      • Schmidt H
      • Kardos G
      • Lancz Z
      • Creuzburg K
      • Damjanova I
      • et al.
      Virulence genes and molecular typing of different groups of Escherichia coli O157 strains in cattle.
      ). EHEC strains and especially those of the O157:H7 serotype are capable of causing hemorrhagic colitis and the life-threatening complication, hemolytic uremic syndrome (
      • Bielaszewska M
      • Karch H.
      Consequences of enterohaemorrhagic Escherichia coli infection for the vascular endothelium.
      ). Shiga toxin–producing E. coli (STEC, of which EHEC is a subset producing intimin as well as Shiga toxin) are responsible for an estimated 2.8 million hospitalizations and 230 deaths worldwide annually (
      • Majowicz SE
      • Scallan E
      • Jones-Bitton A
      • Sargeant JM
      • Stapleton J
      • Angulo FJ
      • et al.
      Global Incidence of Human Shiga Toxin–Producing Escherichia coli Infections and Deaths: A Systematic Review and Knowledge Synthesis.
      ).
      In recent decades, E. coli O157 has been a subject of intense whole genome sequencing (WGS)-based studies, with valuable insights gained about their genomic structure and phylogenetic relations. Regarding the former, one of the most important notions is the significant role of prophages in the virulence and genomic variability of the strains (
      • Asadulghani M
      • Ogura Y
      • Ooka T
      • Itoh T
      • Sawaguchi A
      • Iguchi A
      • et al.
      The defective prophage pool of Escherichia coli O157: prophage-prophage interactions potentiate horizontal transfer of virulence determinants.
      ;
      • Ogura Y
      • Ooka T
      • Iguchi A
      • Toh H
      • Asadulghani M
      • Oshima K
      • et al.
      Comparative genomics reveal the mechanism of the parallel evolution of O157 and non-O157 enterohemorrhagic Escherichia coli.
      ;
      • Shaaban S
      • Cowley LA
      • McAteer SP
      • Jenkins C
      • Dallman TJ
      • Bono JL
      • et al.
      Evolution of a zoonotic pathogen: investigating prophage diversity in enterohaemorrhagic Escherichia coli O157 by long-read sequencing.
      ). The key virulence factors of STEC and EHEC, the genes encoding Shiga toxin (Stx), are also carried by lambdoid prophages, which are inducible and transducible in several cases (
      • Muniesa M
      • Schmidt H.
      Shiga toxin-encoding phages: multifunctional gene ferries.
      ;
      • Rodríguez-Rubio L
      • Muniesa M.
      • Schüller S
      • Bielaszewska M
      Isolation and Characterization of Shiga Toxin Bacteriophages.
      ;
      • Tóth I
      • Sváb D
      • Bálint B
      • Brown-Jaque M
      • Maróti G.
      Comparative analysis of the Shiga toxin converting bacteriophage first detected in Shigella sonnei.
      ). Within the genome of the prototypic EHEC O157:H7 Sakai strain, 18 prophages were identified and characterized (
      • Asadulghani M
      • Ogura Y
      • Ooka T
      • Itoh T
      • Sawaguchi A
      • Iguchi A
      • et al.
      The defective prophage pool of Escherichia coli O157: prophage-prophage interactions potentiate horizontal transfer of virulence determinants.
      ;
      • Ogura Y
      • Ooka T
      • Iguchi A
      • Toh H
      • Asadulghani M
      • Oshima K
      • et al.
      Comparative genomics reveal the mechanism of the parallel evolution of O157 and non-O157 enterohemorrhagic Escherichia coli.
      ).
      Throughout adaptation, prophages become degraded, and their transfer potential is often lost (
      • Bobay L-M
      • Rocha EPC
      • Touchon M.
      The adaptation of temperate bacteriophages to their host genomes.
      ;
      • Liu Z
      • Deng Y
      • Ji M
      • Sun W
      • Fan X
      Prophages domesticated by bacteria promote the adaptability of bacterial cells.
      ), but their recombination capabilities have an evolutionary potential (
      • Asadulghani M
      • Ogura Y
      • Ooka T
      • Itoh T
      • Sawaguchi A
      • Iguchi A
      • et al.
      The defective prophage pool of Escherichia coli O157: prophage-prophage interactions potentiate horizontal transfer of virulence determinants.
      ;
      • Sváb D
      • Bálint B
      • Maróti G
      • Tóth I.
      A novel transducible chimeric phage from Escherichia coli O157:H7 Sakai strain encoding Stx1 production.
      ) to the extent that the O157 strains were called ‘phage factories’ with the capability to release recombinant phages when induced (
      • Ohnishi M
      • Kurokawa K
      • Hayashi T.
      Diversification of Escherichia coli genomes: are bacteriophages the major contributors?.
      ).
      The WGS-based investigations created opportunities for the design of more precise and broad-ranged, rapid nucleotide sequence–based identification methods of pathogens, and this was also true for E. coli O157, especially because the genomic variability and abundance of its isolates warrants the need for reliable identification and classification methods.
      From a practical perspective, the rapid identification of a pathogen is a key issue, both for choosing the optimal treatment as well as for epidemiological tracing. For a precise identification, polymerase chain reaction (PCR)-based methods are widely used, with multilocus variable number of tandem repeat analysis (MLVA) viewed as a precise tool for epidemiological tracing (
      • Van Belkum A.
      Tracing isolates of bacterial species by multilocus variable number of tandem repeat analysis (MLVA).
      ). As for the intestinal pathotypes of E. coli, there have been MLVA systems developed specifically for EHEC strains of the O157 serogroup (
      • Lee K
      • Izumiya H
      • Iyoda S
      • Ohnishi M
      • Working Group EHEC
      Effective Surveillance Using Multilocus Variable-Number Tandem-Repeat Analysis and Whole-Genome Sequencing for Enterohemorrhagic Escherichia coli O157.
      ) as well as for members of the O111, and O26 serogroups (
      • Izumiya H
      • Pei Y
      • Terajima J
      • Ohnishi M
      • Hayashi T
      • Iyoda S
      • et al.
      New system for multilocus variable-number tandem-repeat analysis of the enterohemorrhagic Escherichia coli strains belonging to three major serogroups: O157, O26, and O111.
      ), which were later refined by
      • Wakabayashi Y
      • Harada T
      • Kawai T
      • Takahashi Y
      • Umekawa N
      • Izumiya H
      • et al.
      Multilocus Variable-Number Tandem-Repeat Analysis of Enterohemorrhagic Escherichia coli Serogroups O157, O26, and O111 Based on a De Novo Look-Up Table Constructed by Regression Analysis.
      . Schemes of detection for the non-O157, the so-called ‘big 6’ serogroups of STEC, have also been published (
      • Izumiya H
      • Lee K
      • Ishijima N
      • Iyoda S
      • Ohnishi M.
      Multiple-locus variable-number tandem repeat analysis for non-O157 Shiga toxin-producing Escherichia coli: focus on serogroups O103, O121, O145, O165, and O91.
      ;
      • Timmons C
      • Trees E
      • Ribot EM
      • Gerner-Smidt P
      • LaFon P
      • Im S
      • et al.
      Multiple-locus variable-number tandem repeat analysis for strain discrimination of non-O157 Shiga toxin-producing Escherichia coli.
      ). The general limitation of the method, however, is its narrow target spectrum (
      • Timmons C
      • Trees E
      • Ribot EM
      • Gerner-Smidt P
      • LaFon P
      • Im S
      • et al.
      Multiple-locus variable-number tandem repeat analysis for strain discrimination of non-O157 Shiga toxin-producing Escherichia coli.
      ). On the other hand, prophages are widespread in E. coli, especially in the O157 serogroup, and play a role in its genomic variability and evolution (Davies et al., 2016; Fortier and Sekulovic, 2013).
      In this work, we mapped and monitored the presence of prophages from one of the most well-known prototypic EHEC O157:H7 strain, the Sakai (
      • Hayashi T
      • Makino K
      • Ohnishi M
      • Kurokawa K
      • Ishii K
      • Yokoyama K
      • et al.
      Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12.
      ).
      We proposed a PCR-based identification scheme on the basis of the sequences of the prophages. Demonstrating the prevalence of these prophages among pathogenic E. coli strains, we developed a practical tool for quick genotyping and epidemiological tracing of STEC strains and those of the O157 serogroup.

      2. Materials and methods

      2.1 Bacterial strains

      EHEC, EPEC, and atypical (stx-, eae-) E.coli O157, non-O157 EPEC, enteroaggregative E. coli (EAEC) as well as uropathogenic (UPEC), extraintestinal pathogenic (ExPEC), nonpathogenic laboratory strain E. coli K-12 C600, one Shigella sonnei, and one S. dysenteriae strain were included among the strains on which the typing scheme was tested. All strains used in the study are listed in Table 1.
      Table 1List of strains used for testing of the PCR scheme with their assigned types. The type is the result of the typing PCR reactions transformed into a four-digit numeric code.
      StrainPathotypeSerotypeSP typePhage type
      Phage type is given according to the typing scheme of Ahmed et al., 1987. The abbreviations stand for the following: NT, nontypeable; R, phage resistant; NC, noncharacteristic PT; d, derivative; N/A, not applicable.
      Reference
      SakaiEHECO157:H7111114
      • Hayashi T
      • Makino K
      • Ohnishi M
      • Kurokawa K
      • Ishii K
      • Yokoyama K
      • et al.
      Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12.
      EDL933EHECO157:H7111121
      • Perna NT
      • Plunkett G
      • Burland V
      • Mau B
      • Glasner JD
      • Rose DJ
      • et al.
      Genome sequence of enterohaemorrhagic Escherichia coli O157:H7.
      34EHECO157:H7111421
      • Tóth I
      • Schmidt H
      • Kardos G
      • Lancz Z
      • Creuzburg K
      • Damjanova I
      • et al.
      Virulence genes and molecular typing of different groups of Escherichia coli O157 strains in cattle.
      52EHECO157:H7113133
      • Tóth I
      • Schmidt H
      • Kardos G
      • Lancz Z
      • Creuzburg K
      • Damjanova I
      • et al.
      Virulence genes and molecular typing of different groups of Escherichia coli O157 strains in cattle.
      254EHECO157:H7111121
      • Tóth I
      • Schmidt H
      • Kardos G
      • Lancz Z
      • Creuzburg K
      • Damjanova I
      • et al.
      Virulence genes and molecular typing of different groups of Escherichia coli O157 strains in cattle.
      R4EHECO157:H7111421
      • Tóth I
      • Schmidt H
      • Kardos G
      • Lancz Z
      • Creuzburg K
      • Damjanova I
      • et al.
      Virulence genes and molecular typing of different groups of Escherichia coli O157 strains in cattle.
      R67EHECO157:H7113121
      • Tóth I
      • Schmidt H
      • Kardos G
      • Lancz Z
      • Creuzburg K
      • Damjanova I
      • et al.
      Virulence genes and molecular typing of different groups of Escherichia coli O157 strains in cattle.
      F67EHECO157:H7111421
      • Tóth I
      • Schmidt H
      • Kardos G
      • Lancz Z
      • Creuzburg K
      • Damjanova I
      • et al.
      Virulence genes and molecular typing of different groups of Escherichia coli O157 strains in cattle.
      318EHECO157:NM11178
      • Tóth I
      • Schmidt H
      • Kardos G
      • Lancz Z
      • Creuzburg K
      • Damjanova I
      • et al.
      Virulence genes and molecular typing of different groups of Escherichia coli O157 strains in cattle.
      319EHECO157:NM11138
      • Tóth I
      • Schmidt H
      • Kardos G
      • Lancz Z
      • Creuzburg K
      • Damjanova I
      • et al.
      Virulence genes and molecular typing of different groups of Escherichia coli O157 strains in cattle.
      320EHECO157:NM11138
      • Tóth I
      • Schmidt H
      • Kardos G
      • Lancz Z
      • Creuzburg K
      • Damjanova I
      • et al.
      Virulence genes and molecular typing of different groups of Escherichia coli O157 strains in cattle.
      321EHECO157:NM/H773348
      • Tóth I
      • Schmidt H
      • Kardos G
      • Lancz Z
      • Creuzburg K
      • Damjanova I
      • et al.
      Virulence genes and molecular typing of different groups of Escherichia coli O157 strains in cattle.
      4979EHECO157:H711338
      • Tóth I
      • Schmidt H
      • Kardos G
      • Lancz Z
      • Creuzburg K
      • Damjanova I
      • et al.
      Virulence genes and molecular typing of different groups of Escherichia coli O157 strains in cattle.
      64EPECO157:H744238
      • Tóth I
      • Schmidt H
      • Kardos G
      • Lancz Z
      • Creuzburg K
      • Damjanova I
      • et al.
      Virulence genes and molecular typing of different groups of Escherichia coli O157 strains in cattle.
      65EPECO157:H7441333
      • Tóth I
      • Schmidt H
      • Kardos G
      • Lancz Z
      • Creuzburg K
      • Damjanova I
      • et al.
      Virulence genes and molecular typing of different groups of Escherichia coli O157 strains in cattle.
      67EPECO157:H7443333
      • Tóth I
      • Schmidt H
      • Kardos G
      • Lancz Z
      • Creuzburg K
      • Damjanova I
      • et al.
      Virulence genes and molecular typing of different groups of Escherichia coli O157 strains in cattle.
      68EPECO157:H744558
      • Tóth I
      • Schmidt H
      • Kardos G
      • Lancz Z
      • Creuzburg K
      • Damjanova I
      • et al.
      Virulence genes and molecular typing of different groups of Escherichia coli O157 strains in cattle.
      103EPECO157:H7445550d
      • Tóth I
      • Schmidt H
      • Kardos G
      • Lancz Z
      • Creuzburg K
      • Damjanova I
      • et al.
      Virulence genes and molecular typing of different groups of Escherichia coli O157 strains in cattle.
      121EPECO157:H7445550d
      • Tóth I
      • Schmidt H
      • Kardos G
      • Lancz Z
      • Creuzburg K
      • Damjanova I
      • et al.
      Virulence genes and molecular typing of different groups of Escherichia coli O157 strains in cattle.
      122EPECO157:H7445550d
      • Tóth I
      • Schmidt H
      • Kardos G
      • Lancz Z
      • Creuzburg K
      • Damjanova I
      • et al.
      Virulence genes and molecular typing of different groups of Escherichia coli O157 strains in cattle.
      B20atypicalO157:H125888NT-R
      • Tóth I
      • Schmidt H
      • Kardos G
      • Lancz Z
      • Creuzburg K
      • Damjanova I
      • et al.
      Virulence genes and molecular typing of different groups of Escherichia coli O157 strains in cattle.
      B47atypicalO157:NM2763NT-R
      • Tóth I
      • Schmidt H
      • Kardos G
      • Lancz Z
      • Creuzburg K
      • Damjanova I
      • et al.
      Virulence genes and molecular typing of different groups of Escherichia coli O157 strains in cattle.
      B54atypicalO157:H125768NT-R
      • Tóth I
      • Schmidt H
      • Kardos G
      • Lancz Z
      • Creuzburg K
      • Damjanova I
      • et al.
      Virulence genes and molecular typing of different groups of Escherichia coli O157 strains in cattle.
      T16atypicalO157:H435788NC
      • Tóth I
      • Schmidt H
      • Kardos G
      • Lancz Z
      • Creuzburg K
      • Damjanova I
      • et al.
      Virulence genes and molecular typing of different groups of Escherichia coli O157 strains in cattle.
      T34atypicalO157:H43578821
      • Tóth I
      • Schmidt H
      • Kardos G
      • Lancz Z
      • Creuzburg K
      • Damjanova I
      • et al.
      Virulence genes and molecular typing of different groups of Escherichia coli O157 strains in cattle.
      T22atypicalO157:H435717NC
      • Tóth I
      • Schmidt H
      • Kardos G
      • Lancz Z
      • Creuzburg K
      • Damjanova I
      • et al.
      Virulence genes and molecular typing of different groups of Escherichia coli O157 strains in cattle.
      T4atypicalO157:H125837NT-R
      • Tóth I
      • Schmidt H
      • Kardos G
      • Lancz Z
      • Creuzburg K
      • Damjanova I
      • et al.
      Virulence genes and molecular typing of different groups of Escherichia coli O157 strains in cattle.
      T49atypicalO157:H375737NC
      • Tóth I
      • Schmidt H
      • Kardos G
      • Lancz Z
      • Creuzburg K
      • Damjanova I
      • et al.
      Virulence genes and molecular typing of different groups of Escherichia coli O157 strains in cattle.
      T50atypicalO157:H435738NC
      • Tóth I
      • Schmidt H
      • Kardos G
      • Lancz Z
      • Creuzburg K
      • Damjanova I
      • et al.
      Virulence genes and molecular typing of different groups of Escherichia coli O157 strains in cattle.
      E2348/69EPECO127:H66817N/A
      • Iguchi A
      • Thomson NR
      • Ogura Y
      • Saunders D
      • Ooka T
      • Henderson IR
      • et al.
      Complete genome sequence and comparative genome analysis of enteropathogenic Escherichia coli O127:H6 strain E2348/69.
      28CExPECO758878N/A
      • Dozois CM
      • Clément S
      • Desautels C
      • Oswald E
      • Fairbrother JM.
      Expression of P, S, and F1C adhesins by cytotoxic necrotizing factor 1-producing Escherichia coli from septicemic and diarrheic pigs.
      493/89EHECO157:NM4413N/A
      • Karch H
      • Böhm H
      • Schmidt H
      • Gunzer F
      • Aleksic S
      • Heesemann J.
      Clonal structure and pathogenicity of Shiga-like toxin-producing, sorbitol-fermenting Escherichia coli O157:H-.
      536UPECO6:K15:H318838N/A
      • Schneider G
      • Dobrindt U
      • Brüggemann H
      • Nagy G
      • Janke B
      • Blum-Oehler G
      • et al.
      The Pathogenicity Island-Associated K15 Capsule Determinant Exhibits a Novel Genetic Structure and Correlates with Virulence in Uropathogenic Escherichia coli Strain 536.
      CFT073UPECO6:H1:K8837N/A
      • Mobley HL
      • Green DM
      • Trifillis AL
      • Johnson DE
      • Chippendale GR
      • Lockatell CV
      • et al.
      Pyelonephritogenic Escherichia coli and killing of cultured human renal proximal tubular epithelial cells: role of hemolysin in some strains.
      TB156AEPECO55:H78887N/A
      • Schmidt H
      • Geitz C
      • Tarr PI
      • Frosch M
      • Karch H.
      Non-O157:H7 Pathogenic Shiga Toxin-Producing Escherichia coli: Phenotypic and Genetic Profiling of Virulence Traits and Evidence for Clonality.
      O42EAECO44:H188757N/A
      • Chaudhuri RR
      • Sebaihia M
      • Hobman JL
      • Webber MA
      • Leyton DL
      • Goldberg MD
      • et al.
      Complete genome sequence and comparative metabolic profiling of the prototypical enteroaggregative Escherichia coli strain 042.
      IHE3034ExPECO18:K1:H78734N/A
      • Korhonen TK
      • Valtonen MV
      • Parkkinen J
      • Väisänen-Rhen V
      • Finne J
      • Orskov F
      • et al.
      Serotypes, hemolysin production, and receptor recognition of Escherichia coli strains associated with neonatal sepsis and meningitis.
      C600nonpathogenicK-128865N/A
      • Appleyard RK.
      Segregation of New Lysogenic Types during Growth of a Doubly Lysogenic Strain Derived from Escherichia coli K12.
      HNCMB20045Shigella sonnei2514N/AHungarian National Collection of Medical Bacteria
      HNCMB20081Shigella dysenteriae6717N/AHungarian National Collection of Medical Bacteria
      a Phage type is given according to the typing scheme of Ahmed et al., 1987. The abbreviations stand for the following: NT, nontypeable; R, phage resistant; NC, noncharacteristic PT; d, derivative; N/A, not applicable.

      2.2 Primer design

      Primers were designed manually on the basis of the nucleotide sequences of the Sakai prophages (Sp) within the genome of EHEC O157:H7 prototype strain Sakai (GenBank BA000007;
      • Asadulghani M
      • Ogura Y
      • Ooka T
      • Itoh T
      • Sawaguchi A
      • Iguchi A
      • et al.
      The defective prophage pool of Escherichia coli O157: prophage-prophage interactions potentiate horizontal transfer of virulence determinants.
      ;
      • Hayashi T
      • Makino K
      • Ohnishi M
      • Kurokawa K
      • Ishii K
      • Yokoyama K
      • et al.
      Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12.
      ). Care was taken that the targets be present in only one copy in the Sakai genome and that their size falls between 100–400 bp but of different length each to allow the multiplexing of the reactions. For the same reason, care was taken that none of the primers of different reactions would be able hybridize with each other. The complete list and nucleotide sequences of primers are shown in Table 2.
      Table 2List of primers used in the PCR typing scheme. The reaction group column indicates the reactions which can be grouped as multiplexes. The reaction number indicates the designation of the reaction within the multiplex, which is necessary for the transformation of the results into a numeric code.
      Multiplex groupReaction within groupSakai prophagePutative gene functionPrimer namePrimer sequence (5′->3′)Product length (bp)Position in Sakai genome (Genbank BA000007)
      11Sp1hypothetical protein31.1-fCGCCAGCTAAATCGAACCGCAT333307795-308128
      31.1-rCGGCTGATGATGACGACTTACTG
      2Sp3hypothetical protein84.3-fCAGCAGATTGAAGCAGCACTCG483928750-929233
      84.3-rGAATAAGAGCTGAGTCGTGCGG
      3Sp4host specificity protein106.5-fACGATTGAGCTGACACCGGGC1901205485 - 1205675
      106.5-rCCGGGCTTAATGTGCGGGCC
      21Sp5DNA-binding protein110.2-fCGAAGGGGCAACCGCGAAAATA4211264526 - 1264947
      110.2-rCCCTTGTTACTTTCAGCATTCCG
      2Sp6phage repressor122.1-fGGTGATGGTTTGTGGGAGAGGT3401544591-1544931
      122.1-rTTGGGGGCTTAACGAATACCCC
      3Sp8tail protein124.3-fGCGTGCAGGTAATGGTAATCCG4831651512- 1651995
      124.3-rTTTAATGCCGTCCTGTTCCTGAGA
      31Sp10host specificity protein145.3-fTCCGGCATTTTCCCTGACACCA3531967113- 1967466
      145.3-rTATCGCGTGCCTCCTGGGTTAT
      2Sp9integrase133.1-fGGCATCTAACGGTCTGGTGCC2351758290 - 1758525
      133.1-rCAGCAGAAGCGAACAGCCGTCT
      3Sp11tail protein, small164.1-fTGACATCCACCACATCCGCAGAA1352171798- 2171933
      164.1-rTGTGAGGAAGAGCAGACGGAGA
      41Sp15superinfection inhibition220.4-fTACAGCGAATGCCAAATACGCTC3882935386-2935774
      220.4-rTCACCCCTACAGAGAGCAAAAGAG
      2Sp14hypothetical protein204.4-fCCAAAATACATCCACCCACCGCA4072702464- 2702871
      204.4-rAACGCATAGAAGAGCTGGAGGC
      3Sp17antiterminator protein276.1-fCAGGTGGGTTGGGTAAGGTTTG4253487859-3488284
      276.1-rGATGGCTGCTATGGGGATGGC

      2.3 In vitro testing of the PCR system

      The reactions were performed using deoxyribonucleic acid (DNA) extracted from overnight cultures of bacterial strains grown on Luria-Bertani agar listed in Table 1 by boiling a 10 µl loopful of cells in sterile, distilled water. From every DNA sample, 2 µl was added to a final reaction mixture of 25 µl.
      All reactions were performed using Taq DNA polymerase (Fermentas/Thermofisher, Vilnius, Lithuania) according to the manufacturer's instructions. The primers were suspended in distilled water for a stock solution of 100 µM and used in a working concentration of 0.8 µM, with 0.2 µl of stock solution of each primer added to a 25 µl of total reaction volume. The heat profile of all reactions was 3 minutes of initial denaturation at 94°C, then 30 cycles consisting of a denaturation at 94°C for 30 seconds, annealing at 68°C for 30 seconds, and extension at 72°C for 30 seconds. The reactions were ended with a final extension step of 72°C for 5 minutes. Results of the reactions were visualized and evaluated by gel electrophoresis.
      The reaction profile of each strain was given as a four-digit code similarly to the phage typing scheme of Farmer (1970), as shown in Table 3.
      Table 3The typing scheme transforming the results of multiplex PCR reactions numbered according to Table 2 into a numeric code, analogously to the phage typing scheme outlined by Farmer (1970).
      TypeReaction 1Reaction 2Reaction 3
      1+++
      2++-
      3+-+
      4-++
      5+--
      6-+-
      7--+
      8---

      2.4 In silico testing of the PCR system

      Using the PubMLST database, in silico PCR was performed (
      • Jolley KA
      • Bray JE
      • Maiden MCJ.
      Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications.
      ) separately for each of the primer pairs on all Escherichia genomes present in the database in December 2021 and January 2022, allowing for a 1-nucleotide mismatch and a maximum product length of 1000 nucleotides in each case. Tests were run separately for all isolates (4556 genomes), isolates labeled as EHEC (151 genomes), environmental strains of the O157 serogroup (3 genomes), and STEC (120 genomes).

      3. Results

      We designed and tested a PCR system targeting 12 prophage genes of the prototypic EHEC strain O157:H7 Sakai. The system could be applied as individual reactions as well as grouped into four triplex reactions, specific for groups of 3 genetic regions indicated in Table 2. Sample results of the multiplexed reactions are shown on Fig. 1.
      Figure 1
      Figure 1Sample gel electrophoresis of multiplex reactions of the typing scheme. A) reaction 1, B) reaction 2, C) reaction 3, D) reaction 4. Samples: M, marker; 1, no DNA; 2, O157:H7 Sakai (EHEC); 3, E. coli C600 (K-12, nonpathogenic); 4, O157:H7 strain 254 (EHEC); 5, O157:H7 strain 68 (EPEC); 6, O157:H43 strain T22 (atypical); 7-9, O157:NM strains (EHEC)
      The schematic grouping used in interpreting the results is shown in Table 3. The results of the four multiplex reactions can lead to one of the numbered patterns listed. The patterns obtained by running all four reactions can be given as a numeric code, which is specific for a narrow group of strains.
      Altogether, 40 strains were tested in vitro. The selected strains represented the enteric E. coli pathotypes as well as two ExPEC, two UPEC, and two Shigella strains. A total of 30 strains belonged to the O157 serogroup. The pathogenic strains carried at least one Sp marker gene. Most of the prophage markers genes were detected in EHEC and EPEC O157 strains, and different Sp gene patterns were observed in O157 strains, representing different patho- and serotpyes. Less genes were present in the other non-O157 enteric strains and a maximum of five genes were detected in the ExPEC isolates. One S. sonnei strain carried Stx2 phage (Sp5) marker gene, but stx2 gene was not detected. Only two (Sp9 and Sp15) of the Sp marker genes were detected in nonpathogenic laboratory strain E. coli K-12 C600.
      The code for each of the test strains is given in Table 1.
      The virtual PCR scanning of the Escherichia genomes contained in the PubMLST database has shown that 1775 (39%) of the 4556 isolates fell into the 8888 type, being negative for all reactions. The rest of the strains could be typed by the system in a meaningful way, carrying at least one of the target lambdoid prophage regions.
      Narrowing down the scope of strains for the EHEC and STEC strains, of the 151 and 120 genomes, only four and 14 fell into the ‘untypeable’ 8888 category. The three O157 strains of environmental origin were of types 8888, 6888, and 8887. The 274 investigated strains represented 96 types altogether, the most frequent (‘2464’) being represented by 24 strains, and 52 strains representing a single type each.
      Some noteworthy differences could be identified when comparing the pattern types of the EHEC and STEC strains: the ‘prototypic’ 1111 pattern were only present among the EHEC strains. Type 2462 was represented by 11 EHEC strains, whereas none of the STEC showed this type. Type 2444 and 2464 were only represented by one STEC strain each, whereas among the EHEC strains, 18 and 22 strains showed these types, respectively.
      The full results of the in silico PCR, including the type codes for each isolate, are shown in Table 4.
      Table 4Results of in silico PCR against EHEC, STEC, as well as atypical and commensal O157 strains in the PubMLST database. The types of the strains are presented as a four-digit code according to the scheme outlined in Table 3.
      PathotypePubMLST idIsolate designationPCR type
      Nonpathogenic872Ec_str._K-12_MG1655star8888
      EHEC159E_coli_2347658858
      466Sakai1111
      801Ec_O157:H7_str._EC42062464
      802Ec_O157:H7_str._EC40452464
      803Ec_O157:H7_str._EC40422464
      804Ec_O157:H7_str._EC41962464
      805Ec_O157:H7_str._EC41132464
      806Ec_O157:H7_str._EC40762464
      807Ec_O157:H7_str._EC44012464
      808Ec_O157:H7_str._EC44862464
      809Ec_O157:H7_str._EC45011111
      810Ec_O157:H7_str._EC8694444
      811Ec_O157:H7_str._EC5082744
      812Ec_O157:H7_str._EC40242464
      814Ec_O157:H7_str._TW145881111
      825Ec_O157:H7_str._FRIK9664444
      826Ec_O157:H7_str._FRIK20004444
      836Ec_O157:H7_str._EC40092464
      863Ec_O157:H7_str._EC41912464
      879Ec_TW105098868
      889Ec_TW105988888
      890Ec_TW107228825
      891Ec_TW108288858
      892Ec_TW116818868
      893Ec_TW144258868
      896Ec_O157:H7_str._10441111
      897Ec_O157:H7_str._EC12124414
      898Ec_O157:H7_str._11252444
      899Ec_WV_0603276687
      900Ec_EC4100B7835
      901Ec_O157:H7_str._G51014348
      902Ec_O157:H-_str._493-894728
      903Ec_O157:H-_str._H_26874728
      904Ec_O55:H7_str._3256-974768
      905Ec_O55:H7_str._USDA_59056868
      906Ec_O157:H7_str._LSU-616748
      922Ec_96.04978888
      928Ec_96.1548788
      938Ec_TW077935487
      953Ec_TX19998888
      985Ec_O103:H25_str._NIPH-110604248618
      987Ec_O157:H-_str._493-896624
      1012Ec_O157:H43_str._T225788
      1146Ec_NCCP156581444
      1150Ec_O103:H25_str._CVM93408626
      1151Ec_O103:H2_str._CVM94507168
      1153Ec_O26:H11_str._CVM100267147
      1163Ec_O26:H11_str._CVM100217347
      1164Ec_O26:H11_str._CVM100308344
      1165Ec_O26:H11_str._CVM102247344
      1166Ec_O26:H11_str._CVM99527544
      1169Ec_PA92444
      1170Ec_PA221444
      1171Ec_PA252464
      1172Ec_PA282444
      1173Ec_PA406444
      1174Ec_PA421111
      1175Ec_TW065914466
      1176Ec_TW079452444
      1177Ec_TW102462464
      1178Ec_TW110391621
      1179Ec_TW090982444
      1180Ec_TW091094424
      1181Ec_TW101191464
      1182Ec_TW143014466
      1183Ec_EC44211441
      1184Ec_EC44221441
      1185Ec_EC40132464
      1186Ec_EC44362444
      1187Ec_EC44372444
      1188Ec_EC17384424
      1189Ec_EC17342464
      1190Ec_EC18632444
      1195Ec_EC302/048887
      1208Ec_FRIK9206444
      1209Ec_PA72411
      1210Ec_PA342444
      1214Ec_FRIK19994444
      1216Ec_FRIK20014444
      1217Ec_PA41111
      1218Ec_PA231111
      1219Ec_PA451111
      1220Ec_TT12B1714
      1224Ec_TW159016888
      1226Ec_TW003536888
      1230Ec_EC17352444
      1231Ec_EC17362444
      1232Ec_EC17372444
      1233Ec_EC18482464
      1234Ec_EC18492464
      1235Ec_EC18502464
      1236Ec_EC18562464
      1237Ec_EC18642444
      1238Ec_EC18662444
      1239Ec_EC18682444
      1240Ec_EC18692444
      1253Ec_O26:H11_str._CFSAN0016297344
      1453Ec_ATCC_7007286766
      1454Ec_PA112146
      1455Ec_PA192466
      1456Ec_PA132466
      1457Ec_PA22766
      1458Ec_PA472466
      1459Ec_PA486566
      1460Ec_PA82466
      1464Ec_PA352464
      1716Ec_O157_str._NCCP157392141
      1717Ec_O157_str._NCCP157388888
      1801Ec_O157:H7_str._F8092B4444
      1804Ec_B1022462
      1805Ec_B1071411
      1806Ec_B26-11411
      1807Ec_B26-21411
      1808Ec_B28-12466
      1809Ec_B28-22466
      1810Ec_B29-12466
      1811Ec_B29-22466
      1812Ec_B36-12466
      1813Ec_B36-22466
      1814Ec_B7-12444
      1815Ec_B7-22444
      1816Ec_B932446
      1817Ec_B942446
      1818Ec_B952464
      1819Ec_TW075098887
      1828Ec_14A6464
      1830Ec_B1032462
      1831Ec_B1042462
      1832Ec_B1052462
      1833Ec_B1062462
      1834Ec_B1082166
      1835Ec_B1092166
      1836Ec_B1122464
      1837Ec_B1132466
      1838Ec_B1142466
      1839Ec_B152162
      1840Ec_B172162
      1841Ec_B40-12462
      1842Ec_B40-22462
      1843Ec_B49-22462
      1844Ec_B5-22162
      1845Ec_B832462
      1846Ec_B842462
      1847Ec_B852462
      1848Ec_B862461
      1849Ec_B892466
      1850Ec_B902466
      1851Ec_Tx16866466
      1852Ec_Tx38002464
      2157Ec_ATCC_351507718
      2265Ec_O157:H7_str._H0938000141466
      STEC909Ec_STEC_7v8777
      914Ec_1.27418878
      915Ec_97.02464417
      916Ec_5.05885885
      917Ec_97.02598888
      919Ec_95.09418888
      920Ec_1.22648767
      921Ec_97.02648758
      924Ec_3.26087168
      925Ec_93.06247768
      926Ec_4.05227817
      927Ec_JB1-957618
      929Ec_5.09597868
      930Ec_9.16498888
      931Ec_9.01118788
      932Ec_4.09677757
      933Ec_2.39168867
      934Ec_3.38848788
      940Ec_900105_(10e)7344
      942Ec_STEC_B2F18788
      943Ec_STEC_C165-028888
      946Ec_STEC_94C8788
      947Ec_STEC_DG131-38868
      948Ec_STEC_EH2508868
      950Ec_STEC_H.1.87388
      951Ec_STEC_MHI8138887
      952Ec_STEC_S11918828
      955Ec_STEC_O318888
      956Ec_DEC2B6867
      988Ec_O113:H21_str._CL-38788
      989Ec_O91:H21_str._B2F18788
      990Ec_O121:H19_str._MT#27848
      991Ec_O45:H2_str._03-EN-7058448
      992Ec_O145:H28_str._4865/968818
      1065Ec_DEC1A6867
      1066Ec_DEC1B6867
      1067Ec_DEC1C6867
      1068Ec_DEC1D6867
      1069Ec_DEC1E8887
      1070Ec_DEC2A6867
      1071Ec_DEC2C6867
      1072Ec_DEC2D8887
      1073Ec_DEC2E6867
      1074Ec_DEC3A1711
      1075Ec_DEC3B1411
      1076Ec_DEC3C1411
      1077Ec_DEC3D1421
      1078Ec_DEC3E2444
      1079Ec_DEC3F4424
      1080Ec_DEC4A1476
      1081Ec_DEC4B2464
      1082Ec_DEC4C4444
      1083Ec_DEC4D4444
      1084Ec_DEC4E1464
      1085Ec_DEC4F1411
      1086Ec_DEC5A4768
      1087Ec_DEC5B4768
      1088Ec_DEC5C6728
      1089Ec_DEC5D6768
      1090Ec_DEC5E4768
      1091Ec_DEC6A8868
      1092Ec_DEC6B8768
      1093Ec_DEC6C8788
      1094Ec_DEC6D8448
      1095Ec_DEC6E8748
      1096Ec_DEC7A8888
      1097Ec_DEC7B8888
      1098Ec_DEC7C8888
      1099Ec_DEC7D8888
      1100Ec_DEC7E8888
      1101Ec_DEC8A7817
      1102Ec_DEC8B7617
      1103Ec_DEC8C8147
      1104Ec_DEC8D8747
      1105Ec_DEC8E7847
      1106Ec_DEC9A7787
      1107Ec_DEC9B7467
      1108Ec_DEC9C8777
      1109Ec_DEC9D7767
      1110Ec_DEC9E7747
      1111Ec_DEC10A7374
      1112Ec_DEC10B8467
      1113Ec_DEC10C7344
      1114Ec_DEC10D7487
      1115Ec_DEC10E8888
      1116Ec_DEC10F3787
      1117Ec_DEC11A7787
      1118Ec_DEC11B7787
      1119Ec_DEC11C7467
      1120Ec_DEC11D8853
      1121Ec_DEC11E8428
      1122Ec_DEC12A8788
      1123Ec_DEC12B8488
      1124Ec_DEC12C8788
      1125Ec_DEC12D8787
      1126Ec_DEC12E8788
      1127Ec_DEC13A8868
      1128Ec_DEC13B8868
      1129Ec_DEC13C8765
      1130Ec_DEC13D8765
      1131Ec_DEC13E8765
      1132Ec_DEC14A8888
      1133Ec_DEC14B8888
      1134Ec_DEC14C8788
      1135Ec_DEC14D8788
      1136Ec_DEC15A8825
      1137Ec_DEC15B8855
      1138Ec_DEC15C8855
      1139Ec_DEC15D8855
      1140Ec_DEC15E8855
      1145Ec_NCCP156578284
      1152Ec_O111:H8_str._CVM95747817
      1161Ec_O111:H8_str._CVM96027817
      1162Ec_O111:H8_str._CVM96347827
      1254Ec_O111:H11_str._CFSAN0016308147
      1255Ec_O111:H8_str._CFSAN0016327847
      1271Ec_97.00072365
      1495Ec_O918888
      1802Ec_95NR17628
      2156Ec_95JB17628
      O157 commensal935Ec_2.41688888
      936Ec_3.23036888
      937Ec_30038887

      4. Discussion

      In the current study, we created a PCR-based typing system for E. coli strains of the O157 serogroup, targeting 12 prophage genes present in the prototypic EHEC strain O157:H7 Sakai, grouped analogously to the typing scheme of Farmer (1970), which was originally used in phage typing for E. coli O157:H7 (
      • Ahmed R
      • Bopp C
      • Borczyk A
      • Kasatiya S.
      Phage-typing scheme for Escherichia coli O157:H7.
      ). All the reactions target lambdoid phages, and in the overwhelming majority of cases, the targets are only present in one copy in a given genome (six of the reactions gave multiple products with the in silico PCR in a total of 57 instances; but in practice, it may not influence the results of the test, as the predicted products are of the same size in all cases).
      The size of the reaction products may enable the reactions to be multiplexed, and all of them can be run with the same reaction conditions, including the annealing temperature without the loss of specificity. These features make the method rapid and easy to use.
      By choosing a high number of genes, which could be grouped into multiplex reactions and its results converted into a code, we obtained a system which provides an adequate level of resolution within the target bacterial group, as the 274 in silico investigated strains were sorted into 96 types.
      With the ‘democratization’ of WGS, there has been an upsurge of genomic data regarding pathogenic E. coli (
      • Denamur E
      • Clermont O
      • Bonacorsi S
      • Gordon D.
      The population genetics of pathogenic Escherichia coli.
      ), but there is still a need for rapid classification and identification of strains, especially within the abundantly isolated and sequenced (>1200 whole genomes in GenBank as of January 2022) O157 serogroup, containing several significant pathogenic strains. Our hypothesis was that sequences of prophage origin harbored by a high number of pathogenic strains in the O157 as well as other serogroups could be reliably used for identification, as was shown earlier in the case of Salmonella serovar Typhimurium (
      • Fang N-X
      • Huang B
      • Hiley L
      • Bates J
      • Savill J.
      A rapid multiplex DNA suspension array method for Salmonella Typhimurium subtyping using prophage-related markers.
      ). The conducted in silico test showed that the multiplex PCR system is indeed reliable. The prototypic EHEC strains showed the same patterns as in vitro by testing with this method and that the scheme provides adequate resolution for simple and rapid genotyping of STEC strains as well as those of the O157 serogroup. The method could be a valuable help in epidemiologic tracing and preliminary phylogenetic grouping of this highly diverse group of pathogens.

      Funding source

      This work was supported by the National Research, Development, and Innovation Office (grant number K 124335). Domonkos Sváb was supported by the János Bolyai Research scholarship of the Hungarian Academy of Sciences.

      Ethical approval statement

      No ethical approval was needed for the study.

      Conflict of interest

      The authors declare no conflict of interest.

      References

        • Ahmed R
        • Bopp C
        • Borczyk A
        • Kasatiya S.
        Phage-typing scheme for Escherichia coli O157:H7.
        J Infect Dis. 1987; 155: 806-809
        • Appleyard RK.
        Segregation of New Lysogenic Types during Growth of a Doubly Lysogenic Strain Derived from Escherichia coli K12.
        Genetics. 1954; 39: 440-452
        • Asadulghani M
        • Ogura Y
        • Ooka T
        • Itoh T
        • Sawaguchi A
        • Iguchi A
        • et al.
        The defective prophage pool of Escherichia coli O157: prophage-prophage interactions potentiate horizontal transfer of virulence determinants.
        PLoS Pathog. 2009; 5e1000408https://doi.org/10.1371/journal.ppat.1000408
        • Bielaszewska M
        • Karch H.
        Consequences of enterohaemorrhagic Escherichia coli infection for the vascular endothelium.
        Thromb Haemost. 2005; 94: 312-318https://doi.org/10.1160/TH05-04-0265
        • Bobay L-M
        • Rocha EPC
        • Touchon M.
        The adaptation of temperate bacteriophages to their host genomes.
        Mol Biol Evol. 2013; 30: 737-751https://doi.org/10.1093/molbev/mss279
        • Chaudhuri RR
        • Sebaihia M
        • Hobman JL
        • Webber MA
        • Leyton DL
        • Goldberg MD
        • et al.
        Complete genome sequence and comparative metabolic profiling of the prototypical enteroaggregative Escherichia coli strain 042.
        PLoS ONE. 2010; 5: e8801https://doi.org/10.1371/journal.pone.0008801
        • Denamur E
        • Clermont O
        • Bonacorsi S
        • Gordon D.
        The population genetics of pathogenic Escherichia coli.
        Nat Rev Microbiol. 2021; 19: 37-54https://doi.org/10.1038/s41579-020-0416-x
        • Dozois CM
        • Clément S
        • Desautels C
        • Oswald E
        • Fairbrother JM.
        Expression of P, S, and F1C adhesins by cytotoxic necrotizing factor 1-producing Escherichia coli from septicemic and diarrheic pigs.
        FEMS Microbiol Lett. 1997; 152: 307-312https://doi.org/10.1111/j.1574-6968.1997.tb10444.x
        • Fang N-X
        • Huang B
        • Hiley L
        • Bates J
        • Savill J.
        A rapid multiplex DNA suspension array method for Salmonella Typhimurium subtyping using prophage-related markers.
        J Microbiol Meth. 2012; 88: 19-27https://doi.org/10.1016/j.mimet.2011.10.002
        • Hayashi T
        • Makino K
        • Ohnishi M
        • Kurokawa K
        • Ishii K
        • Yokoyama K
        • et al.
        Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12.
        DNA Res. 2001; 8: 11-22https://doi.org/10.1093/dnares/8.1.11
        • Iguchi A
        • Thomson NR
        • Ogura Y
        • Saunders D
        • Ooka T
        • Henderson IR
        • et al.
        Complete genome sequence and comparative genome analysis of enteropathogenic Escherichia coli O127:H6 strain E2348/69.
        J Bacteriol. 2009; 191: 347-354https://doi.org/10.1128/JB.01238-08
        • Izumiya H
        • Lee K
        • Ishijima N
        • Iyoda S
        • Ohnishi M.
        Multiple-locus variable-number tandem repeat analysis for non-O157 Shiga toxin-producing Escherichia coli: focus on serogroups O103, O121, O145, O165, and O91.
        Jpn J Infect Dis. 2020; 73: 481-490https://doi.org/10.7883/yoken.JJID.2020.095
        • Izumiya H
        • Pei Y
        • Terajima J
        • Ohnishi M
        • Hayashi T
        • Iyoda S
        • et al.
        New system for multilocus variable-number tandem-repeat analysis of the enterohemorrhagic Escherichia coli strains belonging to three major serogroups: O157, O26, and O111.
        Microbiol Immunol. 2010; 54: 569-577https://doi.org/10.1111/j.1348-0421.2010.00252.x
        • Jolley KA
        • Bray JE
        • Maiden MCJ.
        Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications.
        Wellcome Open Res. 2018; 3: 124https://doi.org/10.12688/wellcomeopenres.14826.1
        • Karch H
        • Böhm H
        • Schmidt H
        • Gunzer F
        • Aleksic S
        • Heesemann J.
        Clonal structure and pathogenicity of Shiga-like toxin-producing, sorbitol-fermenting Escherichia coli O157:H-.
        J Clin Microbiol. 1993; https://doi.org/10.1128/jcm.31.5.1200-1205.1993
        • Korhonen TK
        • Valtonen MV
        • Parkkinen J
        • Väisänen-Rhen V
        • Finne J
        • Orskov F
        • et al.
        Serotypes, hemolysin production, and receptor recognition of Escherichia coli strains associated with neonatal sepsis and meningitis.
        Infect Immun. 1985; 48: 486-491https://doi.org/10.1128/iai.48.2.486-491.1985
        • Lee K
        • Izumiya H
        • Iyoda S
        • Ohnishi M
        • Working Group EHEC
        Effective Surveillance Using Multilocus Variable-Number Tandem-Repeat Analysis and Whole-Genome Sequencing for Enterohemorrhagic Escherichia coli O157.
        Appl Environ Microbiol. 2019; 85 (e00728-19)https://doi.org/10.1128/AEM.00728-19
        • Liu Z
        • Deng Y
        • Ji M
        • Sun W
        • Fan X
        Prophages domesticated by bacteria promote the adaptability of bacterial cells.
        BIOCELL. 2020; 44: 157-166https://doi.org/10.32604/biocell.2020.09917
        • Majowicz SE
        • Scallan E
        • Jones-Bitton A
        • Sargeant JM
        • Stapleton J
        • Angulo FJ
        • et al.
        Global Incidence of Human Shiga Toxin–Producing Escherichia coli Infections and Deaths: A Systematic Review and Knowledge Synthesis.
        Foodborne Pathog Dis. 2014; 11: 447-455https://doi.org/10.1089/fpd.2013.1704
        • Mobley HL
        • Green DM
        • Trifillis AL
        • Johnson DE
        • Chippendale GR
        • Lockatell CV
        • et al.
        Pyelonephritogenic Escherichia coli and killing of cultured human renal proximal tubular epithelial cells: role of hemolysin in some strains.
        Infect Immun. 1990; 58: 1281-1289https://doi.org/10.1128/iai.58.5.1281-1289.1990
        • Muniesa M
        • Schmidt H.
        Shiga toxin-encoding phages: multifunctional gene ferries.
        (editor)in: Morabito S Pathogenic Escherichia coli: Molecular and Cellular Microbiology. Caister Academic Press, Norfolk2014: 117-138
        • Ogura Y
        • Ooka T
        • Iguchi A
        • Toh H
        • Asadulghani M
        • Oshima K
        • et al.
        Comparative genomics reveal the mechanism of the parallel evolution of O157 and non-O157 enterohemorrhagic Escherichia coli.
        PNAS. 2009; 106: 17939-17944https://doi.org/10.1073/pnas.0903585106
        • Ohnishi M
        • Kurokawa K
        • Hayashi T.
        Diversification of Escherichia coli genomes: are bacteriophages the major contributors?.
        Trends Microbiol. 2001; 9: 481-485https://doi.org/10.1016/S0966-842X(01)02173-4
        • Pennington H.
        Escherichia coli O157.
        The Lancet. 2010; 376: 1428-1435https://doi.org/10.1016/S0140-6736(10)60963-4
        • Perna NT
        • Plunkett G
        • Burland V
        • Mau B
        • Glasner JD
        • Rose DJ
        • et al.
        Genome sequence of enterohaemorrhagic Escherichia coli O157:H7.
        Nature. 2001; 409: 529-533https://doi.org/10.1038/35054089
        • Rodríguez-Rubio L
        • Muniesa M.
        • Schüller S
        • Bielaszewska M
        Isolation and Characterization of Shiga Toxin Bacteriophages.
        Shiga Toxin-Producing E. coli: Methods and Protocols. Springer US, New York, NY2021: 119-144https://doi.org/10.1007/978-1-0716-1339-9_5
        • Schmidt H
        • Geitz C
        • Tarr PI
        • Frosch M
        • Karch H.
        Non-O157:H7 Pathogenic Shiga Toxin-Producing Escherichia coli: Phenotypic and Genetic Profiling of Virulence Traits and Evidence for Clonality.
        J Infect Dis. 1999; 179: 115-123https://doi.org/10.1086/314537
        • Schneider G
        • Dobrindt U
        • Brüggemann H
        • Nagy G
        • Janke B
        • Blum-Oehler G
        • et al.
        The Pathogenicity Island-Associated K15 Capsule Determinant Exhibits a Novel Genetic Structure and Correlates with Virulence in Uropathogenic Escherichia coli Strain 536.
        Infect Immun. 2004; https://doi.org/10.1128/IAI.72.10.5993-6001.2004
        • Shaaban S
        • Cowley LA
        • McAteer SP
        • Jenkins C
        • Dallman TJ
        • Bono JL
        • et al.
        Evolution of a zoonotic pathogen: investigating prophage diversity in enterohaemorrhagic Escherichia coli O157 by long-read sequencing.
        Microb Genom. 2016; 2https://doi.org/10.1099/mgen.0.000096
        • Sváb D
        • Bálint B
        • Maróti G
        • Tóth I.
        A novel transducible chimeric phage from Escherichia coli O157:H7 Sakai strain encoding Stx1 production.
        Infect Genet Evol. 2015; 29: 42-47https://doi.org/10.1016/j.meegid.2014.10.019
        • Timmons C
        • Trees E
        • Ribot EM
        • Gerner-Smidt P
        • LaFon P
        • Im S
        • et al.
        Multiple-locus variable-number tandem repeat analysis for strain discrimination of non-O157 Shiga toxin-producing Escherichia coli.
        J Microbiol Meth. 2016; 125: 70-80https://doi.org/10.1016/j.mimet.2016.04.005
        • Tóth I
        • Schmidt H
        • Kardos G
        • Lancz Z
        • Creuzburg K
        • Damjanova I
        • et al.
        Virulence genes and molecular typing of different groups of Escherichia coli O157 strains in cattle.
        Appl Environ Microbiol. 2009; 75: 6282-6291https://doi.org/10.1128/AEM.00873-09
        • Tóth I
        • Sváb D
        • Bálint B
        • Brown-Jaque M
        • Maróti G.
        Comparative analysis of the Shiga toxin converting bacteriophage first detected in Shigella sonnei.
        Infect Genet Evol. 2016; 37: 150-157https://doi.org/10.1016/j.meegid.2015.11.022
        • Van Belkum A.
        Tracing isolates of bacterial species by multilocus variable number of tandem repeat analysis (MLVA).
        FEMS Immunol Med Microbiol. 2007; 49: 22-27https://doi.org/10.1111/j.1574-695X.2006.00173.x
        • Wakabayashi Y
        • Harada T
        • Kawai T
        • Takahashi Y
        • Umekawa N
        • Izumiya H
        • et al.
        Multilocus Variable-Number Tandem-Repeat Analysis of Enterohemorrhagic Escherichia coli Serogroups O157, O26, and O111 Based on a De Novo Look-Up Table Constructed by Regression Analysis.
        Foodborne Pathog Dis. 2021; 18: 647-654https://doi.org/10.1089/fpd.2020.2921