Highlights
- •The duplex ddPCR assay targets Salmonella fimY and Shigella ipaH genes.
- •LOD and LOQ of ddPCR were 550 and 5,500 CFU/mL of stool sample for Shigella.
- •Both LOD and LOQ were 1.0 × 104 CFU/mL of stool sample for Salmonella.
- •ddPCR gave more positive results than qPCR in detecting stool samples.
- •Salmonella load was higher in diarrheal samples than in non-diarrheal samples.
Abstract
Objectives
Methods
Results
Conclusion
Keywords
Introduction
European Center for Disease Prevention and Control. Salmonella the most common cause of foodborne outbreaks in the European Union, 2019, https://www.ecdc.europa.eu/en/news-events/salmonella-most-common-cause-foodborne-outbreaks-european-union; (accessed 9 June 2021).
- Zhang J.
- Guan H.
- Zhao W.
- Zhang H.
- Wang W.
- Ling X.
- et al.
Materials and methods
Bacterial strains
Duplex ddPCR assay
Xiao X, Lin J, inventors. Shenzhen Taitai Genetic Engineering Co., Ltd, assignee, 2006. Primers and probe sequence for detecting Salmonella. china CN1743459, https://d.wanfangdata.com.cn/patent/ChJQYXRlbnROZXdTMjAyMTExMTcSEENOMjAwNDEwMDUxMjA5LjcaCHk1aWtiMzU4.
- van den Beld M.J.C.
- Warmelink E.
- Friedrich A.W.
- Reubsaet F.A.G.
- Schipper M.
- de Boer R.F.
- et al.
Species | Target gene | Code | Sequence (5′–3′) | Refs. |
---|---|---|---|---|
Salmonella spp | fimY | SM-F | GCGGCGTTGGAGAGTGATA | ( Xiao et al., 2006 )Xiao X, Lin J, inventors. Shenzhen Taitai Genetic Engineering Co., Ltd, assignee, 2006. Primers and probe sequence for detecting Salmonella. china CN1743459, https://d.wanfangdata.com.cn/patent/ChJQYXRlbnROZXdTMjAyMTExMTcSEENOMjAwNDEwMDUxMjA5LjcaCHk1aWtiMzU4. |
SM-R | AGCAATGGAAAAAGCAGGATG | |||
SM-P-FAM | FAM-CATTTCTTAAACGGCGGTGTCTTTCCCT-BHQ1 | |||
Shigella spp | ipaH | SH-F | CGCAATACCTCCGGATTCC | ( Li et al., 2014 ) |
SH-R | TCCGCAGAGGCACTGAGTT | |||
SH-P-HEX | HEX-AACAGGTCGCTGCATGGCTGGAA-BHQ1 |
Optimization of the duplex ddPCR assay
Comparison of the duplex and singleplex ddPCR assays
qPCR assays
Linearity and precision of the ddPCR assay
World Organisation for Animal Health (OIE). Chapter 1.1.6, https://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/1.01.06_VALIDATION.pdf; (accessed Feb 19 2022). Principles and methods of validation of diagnostic assays for infectious disease, 2013.
Analytical specificity and analytical sensitivity
World Organisation for Animal Health (OIE). Chapter 2.2.5, https://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/2.02.05_STATISTICAL_VALIDATION.pdf; (accessed Feb 19 2022). Statistical approaches to validation, 2014.
Diarrheal and non-diarrheal stool samples
Statistical analysis
Results
Establishment of the duplex ddPCR assay
Linearity and precision of the ddPCR assay
Dilutions | One target in the reaction | Both targets in the reaction | |||||
---|---|---|---|---|---|---|---|
Mean (cp/r) | SD (cp/r) | CV (%) | Mean (cp/r) | SD (cp/r) | CV (%) | ||
Genomic DNA of Salmonella enterica serovar Typhimurium LT2 | 100 | 1.24 × 105 | 1.09 × 103 | 0.9 | 1.34 × 105 | 4.99 × 102 | 0.4 |
10-1 | 1.17 × 104 | 8.99 × 101 | 0.8 | 1.23 × 104 | 1.61 × 102 | 1.3 | |
10-2 | 1.10 × 103 | 2.47 × 101 | 2.3 | 1.06 × 103 | 4.88 × 101 | 4.6 | |
10-3 | 1.00 × 102 | 1.18 × 101 | 11.8 | 1.26 × 102 | 1.52 × 101 | 12.0 | |
10-4 | 1.77 × 101 | 4.50 × 100 | 25.4 | 3.23 × 101 | 8.40 × 100 | 26.0 | |
10-5 | 5.30 × 100 | 3.00 × 100 | 56.6 | 2.90 × 100 | 2.50 × 100 | 86.2 | |
Genomic DNA of Shigella flexneri SH1 | 100 | 1.84 × 105 | 1.63 × 103 | 0.9 | 1.82 × 105 | 3.34 × 103 | 1.8 |
10-1 | 1.46 × 104 | 4.99 × 101 | 0.3 | 1.39 × 104 | 8.22 × 101 | 0.6 | |
10-2 | 1.54 × 103 | 4.51 × 101 | 2.9 | 1.45 × 103 | 5.07 × 101 | 3.5 | |
10-3 | 1.81 × 102 | 2.29 × 101 | 12.6 | 1.37 × 102 | 2.17 × 101 | 15.8 | |
10-4 | 2.93 × 101 | 5.70 × 100 | 19.5 | 1.84 × 101 | 5.40 × 100 | 29.3 | |
10-5 | 1.90 × 100 | 8.00 × 10-1 | 42.1 | 9.00 × 10-1 | 1.30 × 100 | 144.4 |
Analytical specificity and analytical sensitivity
Expected CFU/mL of stool sample | Expected CFU/reaction | ddPCR | qPCR | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean (cp/r) | SD (cp/r) | CV (%) | Mean of Cq | SD of Cq | Measured CFU/reaction | |||||
Mean | SD | CV (%) | ||||||||
Shigella flexneri SH1 | 5.50 × 105 | 1.10 × 103 | 1.23 × 104 | 2.44 × 103 | 19.9 | 22.4 | 0.2 | 1.28 × 103 | 1.85 × 102 | 14.4 |
5.50 × 104 | 1.10 × 102 | 9.50 × 102 | 1.00 × 102 | 10.5 | 26.4 | 0.1 | 9.76 × 101 | 7.00 × 100 | 7.2 | |
5.50 × 103 | 1.10 × 101 | 8.40 × 101 | 1.59 × 101 | 18.9 | 30.0 | 0.4 | 9.50 × 100 | 2.20 × 100 | 23.2 | |
5.50 × 102 | 1.10 × 100 | 1.23 × 101 | 4.90 × 100 | 39.8 | 33.0 | 0.7 | 1.40 × 100 | 6.00 × 10-1 | 42.9 | |
5.50 × 101 | 1.10 × 10-1 | 3.00 × 100 | 3.50 × 100 | 116.7 | 36.0 | 1.3 | NA | NA | NA | |
Salmonella enterica serovar Typhimurium LT2 | 1.00 × 107 | 2.00 × 104 | 1.78 × 104 | 1.78 × 103 | 10.0 | 26.5 | 0.4 | 2.49 × 104 | 7.52 × 103 | 30.3 |
1.00 × 106 | 2.00 × 103 | 1.84 × 103 | 4.28 × 102 | 23.3 | 30.0 | 0.3 | 1.89 × 103 | 3.71 × 102 | 19.7 | |
1.00 × 105 | 2.00 × 102 | 2.34 × 102 | 1.72 × 101 | 7.3 | 33.5 | 0.7 | 1.44 × 102 | 7.82 × 101 | 54.4 | |
1.00 × 104 | 2.00 × 101 | 2.37 × 101 | 4.00 × 100 | 16.9 | 35.7 | 0.4 | 2.72 × 101 | 7.00 × 100 | 25.7 | |
1.00 × 103 | 2.00 × 100 | 1.50 × 100 | 1.60 × 100 | 106.7 | - | - |
Detection of Salmonella spp and Shigella spp in the diarrheal and non-diarrheal stool samples
Pathogens | Results | Diarrheal samples (n = 36) | Non-diarrheal samples (n = 16) | ||||
---|---|---|---|---|---|---|---|
Culture + n, (%) | Culture – n, (%) | Subtotal n, (%) | Culture + n, (%) | Culture –n, (%) | Subtotal n, (%) | ||
Salmonella spp | ddPCR +, qPCR + | 9 (25.0) | 1 (2.8) | 10 (27.8) | 3 (18.8) | 1 (6.3) | 4 (25.0) |
ddPCR +, qPCR - | 4 (11.1) | 7 (19.4) | 11 (30.6) | 1 (6.3) | 3 (18.8) | 4 (25.0) | |
ddPCR -, qPCR + | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
ddPCR -, qPCR - | 3 (8.3) | 12 (33.3) | 15 (41.7) | 0 (0.0) | 8 (50.0) | 8 (50.0) | |
Subtotal | |||||||
ddPCR + | 13 (36.1) | 8 (22.2) | 21 (58.3) | 4 (25.0) | 4 (25.0) | 8 (50.0) | |
qPCR + | 9 (25.0) | 1 (2.8) | 10 (27.8) | 3 (18.8) | 1 (6.3) | 4 (25.0) | |
Total | 16 (44.4) | 20 (55.6) | 36 (100.0) | 4 (25.0) | 12 (75.0) | 16 (100.0) | |
Shigella spp | ddPCR +, qPCR + | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
ddPCR +, qPCR - | 0 (0.0) | 8 (22.2) | 8 (22.2) | 0 (0.0) | 3 (18.8) | 3 (18.8) | |
ddPCR -, qPCR + | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
ddPCR -, qPCR - | 0 (0.0) | 28 (77.8) | 28 (77.8) | 0 (0.0) | 13 (81.3) | 13 (81.3) | |
Subtotal | |||||||
ddPCR + | 0 (0.0) | 8 (22.2) | 8 (22.2) | 0 (0.0) | 3 (18.8) | 3 (18.8) | |
qPCR + | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
Total | 0 (0.0) | 36 (100.0) | 36 (100.0) | 0 (0.0) | 16 (100.0) | 16 (100.0) |
Pathogens | Results | Diarrheal samples (n = 151) n (%) | Non-diarrheal samples (n = 159) n (%) | Total (n = 310) n (%) |
---|---|---|---|---|
Salmonella spp | ddPCR +, qPCR + | 3 (2.0) | 1 (0.6) | 4 (1.3) |
ddPCR +, qPCR - | 5 (3.3) | 3 (1.9) | 8 (2.6) | |
ddPCR -, qPCR + | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
ddPCR -, qPCR - | 143 (94.7) | 155 (97.5) | 298 (96.1) | |
Subtotal | ||||
ddPCR + | 8 (5.3) | 4 (2.5) | 12 (3.9) | |
qPCR + | 3 (2.0) | 1 (0.6) | 4 (1.3) | |
Shigella spp | ddPCR +, qPCR + | 2 (1.3) | 1 (0.6) | 3 (1.0) |
ddPCR +, qPCR - | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
ddPCR -, qPCR + | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
ddPCR -, qPCR - | 149 (98.7) | 158 (99.4) | 307 (99.0) | |
Subtotal | ||||
ddPCR + | 2 (1.3) | 1 (0.6) | 3 (1.0) | |
qPCR + | 2 (1.3) | 1 (0.6) | 3 (1.0) |
Copies/reaction (copies/µL of DNA) | Copies/mL of stool | Number of positive samples | |||
---|---|---|---|---|---|
Round 1 | Round 2 | Diarrheal samples | Non-diarrheal samples | ||
Salmonella fimY | |||||
5.1 × 103–5.8 × 104 | 2.6 × 106–2.9 × 107 | 3 | / | 3 | 0 |
368–412 | 1.8 × 105–2.1 × 105 | 3 | / | 3 | 0 |
20–54 | 1.0 × 104–2.7 × 104 | 8 | / | 7 | 1 |
10–18 | 5.0 × 103–9.0 × 103 | 8 | 8 | 5 | 3 |
<10 | <5.0 × 103 | 39 | 19 | 11 | 8 |
Subtotal | 61 | 29 | 12 | ||
Shigella ipaH | |||||
2.2 × 104–4.0 × 104 | 1.1 × 107–2.0 × 107 | 2 | / | 2 | 0 |
14 | 7 × 103 | 1 | 1 | 0 | 1 |
<10 | < 5 × 103 | 40 | 11 | 8 | 3 |
Subtotal | 43 | 10 | 4 |



Discussion
Declaration of Competing Interest
Ethical approval
Acknowledgments
Author contributions
Appendix. Supplementary materials
References
- Digital PCR hits its stride.Nat Methods. 2012; 9: 541-544
- The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments.Clin Chem. 2009; 55: 611-622
- Tolerance of droplet-digital PCR vs real-time quantitative PCR to inhibitory substances.Clin Chem. 2013; 59: 1670-1672
European Center for Disease Prevention and Control. Salmonella the most common cause of foodborne outbreaks in the European Union, 2019, https://www.ecdc.europa.eu/en/news-events/salmonella-most-common-cause-foodborne-outbreaks-european-union; (accessed 9 June 2021).
- Shigellosis. Annual epidemiological report for 2016.European Center for Disease Prevention and Control, Stockholm2018
- Diarrhoeal disease collaborators. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of diarrhoea in 195 countries: a systematic analysis for the Global Burden of Disease Study 2016.Lancet Infect Dis. 2016; 18 (2018): 1211-1228
- Comparison between two severity scoring scales commonly used in the evaluation of rotavirus gastroenteritis in children.Vaccine. 2008; 26: 5798-5801
- A multiplex PCR assay for the detection of five human pathogenic Vibrio species and Plesiomonas.Mol Cell Probes. 2021; 55101689
- Real time quantitative PCR.Genome Res. 1996; 6: 986-994
- Absolute quantification by droplet digital PCR versus analog real-time PCR.Nat Methods. 2013; 10: 1003-1005
- Applications of digital PCR for clinical microbiology.J Clin Microbiol. 2017; 55: 1621-1628
- Development of a dual real-time PCR for the rapid detection of Shigella in animal-origined food.J Northeast Agric Univ. 2014; 45: 98-102
- Development and assessment of molecular diagnostic tests for 15 enteropathogens causing childhood diarrhoea: a multicentre study.Lancet Infect Dis. 2014; 14: 716-724
- Use of quantitative molecular diagnostic methods to identify causes of diarrhoea in children: a reanalysis of the GEMS case-control study.Lancet. 2016; 388: 1291-1301
- Etiological surveillance results of other infectious diarrhea in Zhuzhou, Hunan.Ji Bing Jian. 2019; (2015–2018;Ce): 789-794
- Real-time PCR in the microbiology laboratory.Clin Microbiol Infect. 2004; 10: 190-212
- Complete genome sequence of Salmonella enterica serovar Typhimurium LT2.Nature. 2001; 413: 852-856
- Escherichia, Shigella, and Salmonella.(editors)in: Jorgensen JH Pfaller MA Carroll KC Funke G Landry ML Richter SS Manual of clinical microbiology. 11th ed. 1. ASM Press, 2015: 685-713
- Assessment of the real-time PCR and different digital PCR platforms for DNA quantification.Anal Bioanal Chem. 2016; 408: 107-121
- Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification.Anal Chem. 2012; 84: 1003-1011
- One-step RT-droplet digital PCR: a breakthrough in the quantification of waterborne RNA viruses.Anal Bioanal Chem. 2014; 406: 661-667
- Rotavirus disease in Finnish children: use of numerical scores for clinical severity of diarrhoeal episodes.Scand J Infect Dis. 1990; 22: 259-267
- Incidence, clinical implications and impact on public health of infections with Shigella spp. and entero-invasive Escherichia coli (EIEC): results of a multicenter cross-sectional study in the Netherlands during 2016–2017.BMC Infect Dis. 2019; 19: 1037
- Comparison between digital PCR and real-time PCR in detection of Salmonella typhimurium in milk.Int J Food Microbiol. 2018; 266: 251-256
- Diarrhoea: why children are still dying and what can be done.Lancet. 2010; 375: 870-872
- Assessment of digital PCR as a primary reference measurement procedure to support advances in precision medicine.Clin Chem. 2018; 64: 1296-1307
World Organisation for Animal Health (OIE). Chapter 1.1.6, https://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/1.01.06_VALIDATION.pdf; (accessed Feb 19 2022). Principles and methods of validation of diagnostic assays for infectious disease, 2013.
World Organisation for Animal Health (OIE). Chapter 2.2.5, https://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/2.02.05_STATISTICAL_VALIDATION.pdf; (accessed Feb 19 2022). Statistical approaches to validation, 2014.
- Comparing the performance of conventional PCR, RTQ-PCR, and droplet digital PCR assays in detection of Shigella.Mol Cell Probes. 2020; 51101531
- Evaluation of the BioFire FilmArray gastrointestinal panel and real-time polymerase chain reaction assays for the detection of major diarrheagenic pathogens by a multicenter diarrheal disease surveillance Program in China.Foodborne Pathog Dis. 2019; 16: 788-798
- Bacterial pathogen spectrum of acute diarrheal outpatients in an urbanized rural district in Southwest China.Int J Infect Dis. 2018; 70: 59-64
Xiao X, Lin J, inventors. Shenzhen Taitai Genetic Engineering Co., Ltd, assignee, 2006. Primers and probe sequence for detecting Salmonella. china CN1743459, https://d.wanfangdata.com.cn/patent/ChJQYXRlbnROZXdTMjAyMTExMTcSEENOMjAwNDEwMDUxMjA5LjcaCHk1aWtiMzU4.
Article info
Publication history
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy