Highlights
- •Patients were grouped into four clusters using clustering large applications (CLARA)-based cluster analysis.
- •The clinical-epidemiologic features changed during the different waves of the pandemic.
- •Older age, male sex, and comorbidities were more common in the second wave.
- •Respiratory and gastrointestinal symptoms were more frequent in the second wave.
- •The results could impact future public health decision-making in health care networks.
Abstract
Objectives
Methods
Results
Conclusion
Keywords
Introduction
World Health Organization. Coronavirus (COVID-19) Dashboard. https://covid19.who.int, 2021 (accessed 15 June 2021).
World Health Organization. Coronavirus (COVID-19) Dashboard. https://covid19.who.int, 2021 (accessed 15 June 2021).
Mortality analyses. Johns Hopkins coronavirus resource center. https://coronavirus.jhu.edu/data/mortality, 2021 (accessed 15 June 2021).
World Health Organization. Coronavirus (COVID-19) Dashboard. https://covid19.who.int, 2021 (accessed 15 June 2021).
World Health Organization. Coronavirus (COVID-19) Dashboard. https://covid19.who.int, 2021 (accessed 15 June 2021).
- Iftimie S
- López-Azcona AF
- Vallverdú I
- Hernández-Flix S
- de Febrer G
- Parra S
- Hernández-Aguilera A
- Riu F
- Joven J
- Andreychuk N
- Baiges-Gaya G
- Ballester F
- Benavent M
- Burdeos J
- Català A
- Castañé È
- Castañé H
- Colom J
- Feliu M
- Gabaldó X
- Garrido D
- Garrido P
- Gil J
- Guelbenzu P
- Lozano C
- Marimon F
- Pardo P
- Pujol I
- Rabassa A
- Revuelta L
- Ríos M
- Rius-Gordillo N
- Rodríguez-Tomàs E
- Rojewski W
- Roquer-Fanlo E
- Sabaté N
- Teixidó A
- Vasco C
- Camps J
- Castro A
- et al.
- Mocanu A
- Noja GG
- Istodor AV
- Moise G
- Leretter M
- Rusu LC
- et al.
- Mollinedo-Gajate I
- Villar-Álvarez F
- Zambrano-Chacón M de los Á
- Núñez-García L.
- de la Dueña-Muñoz L
- López-Chang C
- et al.
Methods
Study design
Population and sample
Instruments and variables
Procedures and techniques
Statistical analysis
Ethical aspects
Results

Variables | Pandemic wave | |||
---|---|---|---|---|
First wave (n = 36938) | Second wave (n = 16974) | |||
N | % | n | % | |
Age (years) | 44.87 ± 20.5 | 47.92 ± 20.8 | ||
Age (categorized) | ||||
Child (0-11) | 1859 | 5 | 626 | 3.7 |
Adolescent (12-17) | 1451 | 3.9 | 535 | 3.2 |
Young (18-29) | 5570 | 15.1 | 2431 | 14.3 |
Adult (30-59) | 18539 | 50.2 | 8092 | 47.7 |
Older adult (60-) | 9519 | 25.8 | 5290 | 31.2 |
Gender | ||||
Female | 20803 | 56.3 | 8444 | 49.8 |
Male | 16135 | 43.7 | 8530 | 50.3. |
Clinical characteristics | ||||
General malaise | 16721 | 45.3 | 12044 | 71.0 |
Cough | 16578 | 44.9 | 9556 | 56.3 |
Sore throat | 14003 | 37.9 | 7205 | 42.5 |
Fever | 12162 | 32.9 | 6215 | 36.6 |
Headache | 11640 | 31.5 | 6219 | 36.6 |
Nasal congestion | 6817 | 18.5 | 4473 | 26.4 |
Muscle pain | 6185 | 16.7 | 3826 | 22.5 |
Respiratory distress | 6569 | 17.8 | 3586 | 21.1 |
Diarrhea | 5089 | 13.8 | 3096 | 18.2 |
Chills | 521 | 1.4 | 1787 | 10.5 |
Chest pain | 3923 | 10.6 | 1738 | 10.2 |
Nausea | 2274 | 6.2 | 1257 | 7.4 |
Anosmia | 334 | 0.9 | 1158 | 6.8 |
Ageusia | 290 | 0.8 | 977 | 5.8 |
Dyspnea | 1314 | 3.6 | 972 | 5.7 |
Abdominal pain | 1082 | 2.9 | 596 | 3.5 |
Ear pain | 48 | 0.1 | 204 | 1.2 |
Pharyngeal exudate | 343 | 0.9 | 104 | 0.6 |
Irritability | 298 | 0.8 | 79 | 0.5 |
Conjunctival injection | 108 | 0.3 | 44 | 0.3 |
Seizure | 8 | 0.0 | 2 | 0.0 |
Comorbidities | ||||
Cardiovascular disease | 4078 | 11.0 | 2445 | 14.4 |
Diabetes | 2236 | 6.1 | 1251 | 7.4 |
HIV | 42 | 0.1 | 12 | 0.1 |
Kidney disease | 364 | 1.0 | 215 | 1.3 |
Lung disease | 371 | 1.0 | 110 | 0.7 |
Cancer | 399 | 1.1 | 281 | 1.7 |
Obesity | 208 | 0.6 | 921 | 5.4 |
Pregnancy | 1208 | 3.3 | 574 | 3.4 |
Cluster analysis
Characteristics | Overall N = 53,912 | 1 n = 16,832 | 2 n = 14,284 | 3 n = 11,680 | 4 n = 11,116 | P-value |
---|---|---|---|---|---|---|
COVID-19 pandemic wave | <0.001 | |||||
First wave | 36,938 (68.5%) | 10,700 (63.6%) | 8,805 (61.6%) | 6,816 (58.4%) | 10,617 (95.5%) | |
Second wave | 16,974 (31.5%) | 6,132 (36.4%) | 5,479 (38.4%) | 4,864 (41.6%) | 499 (4.5%) | |
Year | <0.001 | |||||
2020 | 36,938 (68.5%) | 10,700 (63.6%) | 8,805 (61.6%) | 6,816 (58.4%) | 10,617 (95.5%) | |
2021 | 16,974 (31.5%) | 6,132 (36.4%) | 5,479 (38.4%) | 4,864 (41.6%) | 499 (4.5%) | |
Gender | <0.001 | |||||
Female | 29,247 (54.2%) | 11,311 (67.2%) | 7,775 (54.4%) | 3,436 (29.4%) | 6,725 (60.5%) | |
Male | 24,665 (45.8%) | 5,521 (32.8%) | 6,509 (45.6%) | 8,244 (70.6%) | 4,391 (39.5%) | |
Age (years) | <0.001 | |||||
Mean (SD) | 45.8 (20.6) | 38.9 (18.7) | 42.7 (18.1) | 63.6 (16.3) | 41.7 (20.0) | |
Median (IQR) | 45.0 (31.0, 61.0) | 38.0 (26.0, 52.0) | 42.0 (29.0, 56.0) | 65.0 (53.0, 76.0) | 39.0 (28.0, 56.0) | |
Range | 0.0, 103.0 | 0.0, 100.0 | 0.0, 103.0 | 0.3, 103.0 | 0.0, 101.0 | |
Age group | <0.001 | |||||
0-4 | 1,098 (2.0%) | 521 (3.1%) | 129 (0.9%) | 11 (0.1%) | 437 (3.9%) | |
5-9 | 927 (1.7%) | 540 (3.2%) | 224 (1.6%) | 9 (0.1%) | 154 (1.4%) | |
10-14 | 1,278 (2.4%) | 671 (4.0%) | 391 (2.7%) | 10 (0.1%) | 206 (1.9%) | |
15-17 | 1,168 (2.2%) | 519 (3.1%) | 359 (2.5%) | 30 (0.3%) | 260 (2.3%) | |
18-29 | 8,001 (14.8%) | 3,132 (18.6%) | 2,549 (17.8%) | 238 (2.0%) | 2,082 (18.7%) | |
30-59 | 26,631 (49.4%) | 8,865 (52.7%) | 7,891 (55.2%) | 4,144 (35.5%) | 5,731 (51.6%) | |
60-79 | 11,747 (21.8%) | 2,347 (13.9%) | 2,405 (16.8%) | 5,154 (44.1%) | 1,841 (16.6%) | |
80-103 | 3,062 (5.7%) | 237 (1.4%) | 336 (2.4%) | 2,084 (17.8%) | 405 (3.6%) | |
Case type | <0.001 | |||||
Asymptomatic | 11,157 (20.7%) | 278 (1.7%) | 159 (1.1%) | 122 (1.0%) | 10,598 (95.3%) | |
Symptomatic | 42,755 (79.3%) | 16,554 (98.3%) | 14,125 (98.9%) | 11,558 (99.0%) | 518 (4.7%) |



Discussion
Clinical-epidemiological variation in the first and second waves of the pandemic
- Iftimie S
- López-Azcona AF
- Vallverdú I
- Hernández-Flix S
- de Febrer G
- Parra S
- Hernández-Aguilera A
- Riu F
- Joven J
- Andreychuk N
- Baiges-Gaya G
- Ballester F
- Benavent M
- Burdeos J
- Català A
- Castañé È
- Castañé H
- Colom J
- Feliu M
- Gabaldó X
- Garrido D
- Garrido P
- Gil J
- Guelbenzu P
- Lozano C
- Marimon F
- Pardo P
- Pujol I
- Rabassa A
- Revuelta L
- Ríos M
- Rius-Gordillo N
- Rodríguez-Tomàs E
- Rojewski W
- Roquer-Fanlo E
- Sabaté N
- Teixidó A
- Vasco C
- Camps J
- Castro A
- et al.
- Mollinedo-Gajate I
- Villar-Álvarez F
- Zambrano-Chacón M de los Á
- Núñez-García L.
- de la Dueña-Muñoz L
- López-Chang C
- et al.
- Iftimie S
- López-Azcona AF
- Vallverdú I
- Hernández-Flix S
- de Febrer G
- Parra S
- Hernández-Aguilera A
- Riu F
- Joven J
- Andreychuk N
- Baiges-Gaya G
- Ballester F
- Benavent M
- Burdeos J
- Català A
- Castañé È
- Castañé H
- Colom J
- Feliu M
- Gabaldó X
- Garrido D
- Garrido P
- Gil J
- Guelbenzu P
- Lozano C
- Marimon F
- Pardo P
- Pujol I
- Rabassa A
- Revuelta L
- Ríos M
- Rius-Gordillo N
- Rodríguez-Tomàs E
- Rojewski W
- Roquer-Fanlo E
- Sabaté N
- Teixidó A
- Vasco C
- Camps J
- Castro A
- et al.
- Iftimie S
- López-Azcona AF
- Vallverdú I
- Hernández-Flix S
- de Febrer G
- Parra S
- Hernández-Aguilera A
- Riu F
- Joven J
- Andreychuk N
- Baiges-Gaya G
- Ballester F
- Benavent M
- Burdeos J
- Català A
- Castañé È
- Castañé H
- Colom J
- Feliu M
- Gabaldó X
- Garrido D
- Garrido P
- Gil J
- Guelbenzu P
- Lozano C
- Marimon F
- Pardo P
- Pujol I
- Rabassa A
- Revuelta L
- Ríos M
- Rius-Gordillo N
- Rodríguez-Tomàs E
- Rojewski W
- Roquer-Fanlo E
- Sabaté N
- Teixidó A
- Vasco C
- Camps J
- Castro A
- et al.
- Iftimie S
- López-Azcona AF
- Vallverdú I
- Hernández-Flix S
- de Febrer G
- Parra S
- Hernández-Aguilera A
- Riu F
- Joven J
- Andreychuk N
- Baiges-Gaya G
- Ballester F
- Benavent M
- Burdeos J
- Català A
- Castañé È
- Castañé H
- Colom J
- Feliu M
- Gabaldó X
- Garrido D
- Garrido P
- Gil J
- Guelbenzu P
- Lozano C
- Marimon F
- Pardo P
- Pujol I
- Rabassa A
- Revuelta L
- Ríos M
- Rius-Gordillo N
- Rodríguez-Tomàs E
- Rojewski W
- Roquer-Fanlo E
- Sabaté N
- Teixidó A
- Vasco C
- Camps J
- Castro A
- et al.
Cluster analysis based on CLARA
Public health relevance
Limitations and strengths
- Mollinedo-Gajate I
- Villar-Álvarez F
- Zambrano-Chacón M de los Á
- Núñez-García L.
- de la Dueña-Muñoz L
- López-Chang C
- et al.
Conclusions
Declaration of competing interest
Funding
CRediT authorship contribution statement
Appendix. Supplementary materials
References
- Characteristics and severity of COVID-19 among Sudanese patients during the waves of the pandemic.Sci Afr. 2021; 14: e01033
- Clinical manifestations, risk factors, and maternal and perinatal outcomes of coronavirus disease 2019 in pregnancy: living systematic review and meta-analysis.BMJ. 2020; 370: m3320
- One year of the COVID-19 pandemic in Galicia: a global view of age-group statistics during three waves.Int J Environ Res Public Health. 2021; 18: 5104
- Rhino-orbito-cerebral-mucormycosis during the COVID-19 second wave in 2021 - a preliminary report from a single hospital.Clin Ophthalmol. 2021; 15: 3505-3514
- Profiles and outcomes in patients with COVID-19 admitted to wards of a French oncohematological hospital: A clustering approach.PLoS One. 2021; 16e0250569
- High prevalence of concurrent gastrointestinal manifestations in patients with severe acute respiratory syndrome coronavirus 2: Early experience from California.Gastroenterology. 2020; 159: 775-777
- Boletín epidemiológico del Perú. Volumen 30-SE 18. Centro Nacional de Epidemiología.Prevención y Control de Enfermedades, 2021 (accessed dd month yyyy)
- Risk factors for mortality in hospitalized patients with COVID-19 from three hospitals in Peru: a retrospective cohort study.F1000Res. 2021; 10: 224
- Decreased Case Fatality Rate of COVID-19 in the second Wave: a study in 53 countries or regions.Transbound Emerg Dis. 2021; 68: 213-215
- COVID-19 strains remote regions of Peru.Lancet. 2020; 395: 1684
- Second waves, social distancing, and the spread of COVID-19 across the USA.Wellcome Open Res. 2020; 5: 103
- COVID-19 hospital activity and in-hospital mortality during the first and second waves of the pandemic in England: an observational study.Thorax. 2021; 0: 1-8
- The importance of understanding the stages of COVID-19 in treatment and trials.AIDS Rev. 2021; 23: 40-47
- The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status.Mil Med Res. 2020; 7: 11
- Exploring the clinical characteristics of COVID-19 clusters identified using factor analysis of mixed data-based cluster analysis.Front Med (Lausanne). 2021; 8644724
- Some lessons that Peru did not learn before the second wave of COVID-19.Int J Health Plann Mgmt. 2021; 36: 995-998
- Demographic profile and outcome of patients admitted to a COVID dedicated hospital in Bangladesh during the second wave.Med (Baltim). 2021; 100: e27281
- Características maternas y resultados perinatales en mujeres peruanas infectadas con COVID-19: un estudio observacional y transversal.Rev Cuerpo Med HNAAA. 2021; 14: 344-351
- First and second waves of coronavirus disease-19: a comparative study in hospitalized patients in Reus, Spain.PLoS One. 2021; 16e0248029
- Guía de Práctica Clínica para el Manejo de COVID-19: guía en Versión Extensa. Versión 1, mayo 2021.2021
- Clinical severity of COVID-19 in patients admitted to hospital during the omicron wave in South Africa: a retrospective observational study.Lancet Glob Health. 2022; 10: e961-e969
Mortality analyses. Johns Hopkins coronavirus resource center. https://coronavirus.jhu.edu/data/mortality, 2021 (accessed 15 June 2021).
- Review of the clinical characteristics of coronavirus disease 2019 (COVID-19).J Gen Intern Med. 2020; 35: 1545-1549
- Practical guide to cluster analysis in R: unsupervised machine learning.STHDA, 2017
- The ups and downs of daily life during COVID-19: age differences in affect, stress, and positive events.J Gerontol B Psychol Sci Soc Sci. 2021; 76: e30-e37
- Clinical profile of hospitalized COVID-19 patients in first & second wave of the pandemic: insights from an Indian registry based observational study.Indian J Med Res. 2021; 153: 619-628
- COVID-19 patients’ clinical characteristics, discharge rate, and fatality rate of meta-analysis.J Med Virol. 2020; 92: 577-583
- SARS-CoV-2 (COVID-19): what do we know about children? a systematic review.Clin Infect Dis. 2020; 71: 2469-2479
- Individual characteristics as prognostic factors of the evolution of hospitalized COVID-19 Romanian patients: a comparative observational study between the first and second waves based on Gaussian graphical models and structural equation modeling.J Clin Med. 2021; 10: 1958
- First and second waves of coronavirus disease 2019 in Madrid, Spain: clinical characteristics and hematological risk factors associated with critical/fatal illness.Crit Care Explor. 2021; 3: e0346
- Clinical characteristics of hospitalized individuals dying with COVID-19 by age group in Italy.J Gerontol A Biol Sci Med Sci. 2020; 75: 1796-1800
- Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: a descriptive, cross-sectional, multicenter study.Am J Gastroenterol. 2020; 115: 766-773
- Self-medication practices during the COVID-19 pandemic among the adult population in Peru: a cross-sectional survey.Saudi Pharm J. 2021; 29: 1-11
- Predicting clinical outcome with phenotypic clusters in COVID-19 pneumonia: an analysis of 12,066 hospitalized patients from the Spanish registry semi–COVID-19.J Clin Med. 2020; 9: E3488
- First and second COVID-19 waves in Japan: a comparison of disease severity and characteristics.J Infect. 2021; 82: 84-123
- The first and second waves of the COVID-19 pandemic in Africa: a cross-sectional study.Lancet. 2021; 397: 1265-1275
- The COVID-19 pandemic in Peru: what went wrong?.Am J Trop Med Hyg. 2021; 104: 1176-1178
- Main differences between the first and second waves of COVID-19 in Madrid, Spain.Int J Infect Dis. 2021; 105: 374-376
- Review article: gastrointestinal features in COVID-19 and the possibility of faecal transmission.Aliment Pharmacol Ther. 2020; 51: 843-851
- Self-medication in hospitalized patients with COVID-19: a cross-sectional study in northern Peru.GERMS. 2022; 12: 46-53
- Use of medicinal plants for COVID-19 prevention and respiratory symptom treatment during the pandemic in Cusco, Peru: a cross-sectional survey.PLoS One. 2021; 16e0257165
- SARS-CoV-2 infection incidence during the first and second COVID-19 waves in Italy.Environ Res. 2021; 197111097
- COVID-19: the gendered impacts of the outbreak.Lancet. 2020; 395: 846-848
World Health Organization. Coronavirus (COVID-19) Dashboard. https://covid19.who.int, 2021 (accessed 15 June 2021).
- Proportion of asymptomatic infection among COVID-19 positive persons and their transmission potential: a systematic review and meta-analysis.PLoS One. 2020; 15e0241536
- COVID-19 in Peru: from supervised walks for children to the first case of Kawasaki-like syndrome.BMJ. 2020; 369: m2418
- A systematic review of vaccine breakthrough infections by SARS-CoV-2 delta variant.Int J Biol Sci. 2022; 18: 889-900
- Management of digestive disorders and procedures associated with COVID-19.Am J Gastroenterol. 2020; 115: 1153-1155
Article info
Publication history
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy