Highlights
- •The prevalence of carbapenem-resistant Acinetobacter baumannii (CR-AB) varied among countries.
- •Of 232 CR-AB isolates, 224 (96.6%) harbored at least one carbapenemase gene.
- •Of the 226 carbapenemase genes detected, blaOXA-23 was the most dominant (94.7%).
- •CR-AB showed varied resistance rates for minocycline, colistin, and tigecycline.
ABSTRACT
Objectives
Methods
Results
Conclusion
Keywords
Introduction
- Jean SS
- Lee YL
- Liu PY
- Lu MC
- Ko WC
- Hsueh PR.
- Liu PY
- Ko WC
- Lee WS
- Lu PL
- Chen YH
- Cheng SH
- et al.
- Sharma S
- Das A
- Banerjee T
- Barman H
- Yadav G
- Kumar A.
- Kousouli E
- Zarkotou O
- Polimeri K
- Themeli-Digalaki K
- Pournaras S.
- Hujer AM
- Hujer KM
- Leonard DA
- Powers RA
- Wallar BJ
- Mack AR
- et al.
- Lötsch F
- Albiger B
- Monnet DL
- Struelens MJ
- Seifert H
- Kohlenberg A
- et al.
- Hamidian M
- Nigro SJ.
- Kyriakidis I
- Vasileiou E
- Pana ZD
- Tragiannidis A.
- Rossolini GM
- Bochenska M
- Fumagalli L
- Dowzicky M.
- Rossolini GM
- Bochenska M
- Fumagalli L
- Dowzicky M.
Materials and methods
Bacterial isolates and identification
ATLAS Surveillance Program. Antimicrobial Testing Leadership and Surveillance, https://www.atlas-surveillance.com; 2021 [accessed 01 February 2022].
- Karlowsky JA
- Kazmierczak KM
- Valente MLNF
- Luengas EL
- Baudrit M
- Quintana A
- et al.
Antimicrobial susceptibility testing
Detection of β-lactamase genes
- Karlowsky JA
- Kazmierczak KM
- Valente MLNF
- Luengas EL
- Baudrit M
- Quintana A
- et al.
Statistical analysis
Ethics
Results
Characteristics of A. baumannii isolates
Demographic parameter | No. (%) of patients (n = 2674) |
---|---|
Region | |
Australia | 102 (3.8) |
China | 878 (32.8) |
Hong Kong | 74 (2.8) |
India | 329 (12.3) |
Japan | 142 (5.3) |
Korea, South | 225 (8.4) |
Malaysia | 159 (5.9) |
Pakistan | 40 (1.5) |
Philippines | 203 (7.6) |
Singapore | 27 (1.0) |
Taiwan | 223 (8.3) |
Thailand | 259 (9.7) |
Vietnam | 13 (0.5) |
Patient location | |
Clinic/office | 13 (0.5) |
Emergency room | 160 (6.0) |
General unspecified ICU | 167 (6.2) |
Medicine, general ward | 871 (32.6) |
Medicine, ICU | 508 (19.0) |
Pediatric, general ward | 37 (1.4) |
Pediatric, ICU | 65 (2.4) |
Surgery, general ward | 450 (16.8) |
Surgery, ICU | 276 (10.3) |
Unknown | 127 (4.7) |
Age (years) | |
0-18 | 156 (5.8) |
19-30 | 203 (7.6) |
31-60 | 949 (35.5) |
61 and older | 1362 (50.9) |
Unknown | 4 (0.1) |
Culture source | |
Blood | 341 (12.8) |
Head, ear, eyes, nose, and throat | 1 (0.04) |
Instruments | 4 (0.1) |
Intestinal | 261 (9.8) |
Nervous system | 12 (0.4) |
Respiratory | 1523 (57.0) |
Skin/musculoskeletal | 310 (11.6) |
Genitourinary | 217 (8.1) |
Unknown | 5 (0.2) |
Year | |
2012 | 94 (3.5) |
2013 | 132 (4.9) |
2014 | 254 (9.5) |
2015 | 319 (11.9) |
2016 | 379 (14.2) |
2017 | 106 (4.0) |
2018 | 398 (14.9) |
2019 | 992 (37.1) |
Antimicrobial susceptibility
Organism/antibacterial agent | MIC (mg/l) | % of isolates | ||||
---|---|---|---|---|---|---|
MIC50 | MIC90 | MIC range | Susceptible | Intermediate | Resistant | |
A. baumannii (n = 2674) | ||||||
Amikacin | 64 | 128 | 0.25-128 | 38.9 | 1.2 | 60.0 |
Ampicillin/sulbactam (n = 2502) | 64 | 128 | 1-128 | 25.9 | 7.1 | 67.0 |
Aztreonam (n = 2106) | 64 | 256 | 0.03-256 | - | - | - |
Cefepime | 32 | 64 | 0.12-128 | 26.7 | 2.8 | 70.5 |
Cefoperazone/sulbactam (n = 1390) | 32 | 128 | 0.12-128 | 36.4 | 25.3 | 38.3 |
Ceftaroline (n = 2106) | 16 | 256 | 0.015-256 | - | - | - |
Ceftazidime | 64 | 256 | 0.06-256 | 28.5 | 1.6 | 69.9 |
Ceftazidime/avibactam (n = 2106) | 64 | 256 | 0.06-256 | - | - | - |
Ciprofloxacin (n = 1390) | 8 | 8 | 0.12-8 | 23.1 | 0.6 | 76.3 |
Colistin (n = 1880) | 1 | 2 | 0.12-16 | 0 | 98.2 | 1.8 |
Doripenem (n = 716) | 8 | 16 | 0.015-16 | 38.4 | 0.1 | 61.5 |
Imipenem (n = 2106) | 16 | 16 | 0.06-16 | 29.3 | 0.3 | 70.4 |
Levofloxacin | 8 | 16 | 0.015-16 | 28.3 | 11.1 | 60.6 |
Meropenem | 32 | 32 | 0.015-32 | 27.8 | 0.5 | 71.7 |
Minocycline (n = 568) | 2 | 8 | 0.5-32 | 77.5 | 17.0 | 5.5 |
Piperacillin/tazobactam | 128 | 256 | 0.06-256 | 26.0 | 1.7 | 72.3 |
Tigecycline | 1 | 2 | 0.015-16 | - | - | - |
TMP-SMZ (n = 1390) | 32 | 64 | 1-64 | 37.3 | 0 | 62.7 |
A. baumannii carbapenem-resistant (n = 1918) | ||||||
Amikacin | 128 | 128 | 0.5-128 | 16.1 | 1.7 | 82.2 |
Ampicillin/sulbactam (n = 1809) | 64 | 128 | 2-128 | 3.7 | 9.2 | 87.1 |
Aztreonam (n = 1489) | 64 | 64 | 8-256 | - | - | - |
Cefepime | 64 | 64 | 0.5-64 | 0.7 | 2.7 | 96.6 |
Cefoperazone/sulbactam (n = 1049) | 64 | 128 | 2-128 | 17.0 | 32.8 | 50.2 |
Ceftarolin (n = 1489) | 16 | 256 | 0.5-256 | - | - | - |
Ceftazidime | 256 | 256 | 1-256 | 3.5 | 1.5 | 95.0 |
Ceftazidime/avibactam (n = 1489) | 64 | 256 | 1-256 | - | - | - |
Ciprofloxacin (n = 1049) | 8 | 8 | 0.12-8 | 1.6 | 0.3 | 98.1 |
Colistin (n = 1368) | 1 | 2 | 0.12-16 | 0 | 98.3 | 1.7 |
Doripenem (n = 440) | 8 | 16 | 4-16 | 0 | 0.2 | 99.8 |
Imipenem (n = 1489) | 16 | 16 | 0.5-16 | 0.5 | 0.3 | 99.2 |
Levofloxacin | 8 | 16 | 0.015-16 | 3.8 | 14.6 | 81.6 |
Meropenem | 32 | 32 | 8-32 | 0 | 0 | 100 |
Minocycline (n = 429) | 4 | 8 | 0.5-32 | 71.1 | 21.7 | 7.2 |
Piperacillin/tazobactam | 128 | 256 | 2-256 | 0.5 | 1.3 | 98.2 |
Tigecycline | 1 | 2 | 0.06-16 | - | - | - |
TMP-SMZ (n = 1409) | 64 | 64 | 1-64 | 19.8 | 0 | 80.2 |
A. baumannii carbapenem-susceptible (n = 743) | ||||||
Amikacin | 2 | 4 | 0.25-128 | 97.2 | 0 | 2.8 |
Ampicillin/sulbactam (n = 335) | 2 | 4 | 1-128 | 94.6 | 09 | 4.5 |
Aztreonam (n = 611) | 32 | 64 | 0.03-256 | - | - | - |
Cefepime | 2 | 8 | 0.12-64 | 93.8 | 2.8 | 3.4 |
Cefoperazone/sulbactam (n = 335) | 2 | 4 | 0.5-128 | 96.7 | 1.8 | 1.5 |
Ceftaroline (n = 611) | 2 | 8 | 0.06-256 | - | - | - |
Ceftazidime | 4 | 8 | 0.06-256 | 93.1 | 1.9 | 5.0 |
Ceftazidime/avibactam (n = 611) | 4 | 16 | 0.06-256 | - | - | - |
Ciprofloxacin (n = 335) | 0.25 | 1 | 0.12-8 | 90.4 | 1.5 | 8.1 |
Colistin (n = 506) | 1 | 2 | 0.12-16 | 0 | 97.8 | 2.2 |
Doripenem (n = 276) | 0.25 | 0.5 | 0.015-8 | 99.6 | 0 | 0.4 |
Imipenem (n = 611) | 0.25 | 0.5 | 0.06-16 | 99.0 | 0.3 | 0.7 |
Levofloxacin | 0.25 | 1 | 0.03-16 | 91.5 | 2.2 | 6.3 |
Meropenem | 0.25 | 1 | 0.015-2 | 100 | 0 | 0 |
Minocycline (n = 132) | 0.5 | 1 | 0.5-8 | 99.2 | 0.8 | 0 |
Piperacillin/tazobactam | 2 | 16 | 0.06-256 | 92.2 | 2.6 | 5.2 |
Tigecycline | 0.12 | 0.5 | 0.015-16 | - | - | - |
TMP-SMZ (n = 335) | 1 | 1 | 1-64 | 91.9 | 0 | 8.1 |

Detection of carbapenemase genes in A. baumannii isolates
Geographic differences in A. baumannii antimicrobial resistance

Countries | n | CR A. baumannii, n (%) | Isolates of CR A. baumannii with detected β-lactamase gene, n (%) | Class B β-lactamase gene (n) | Class D β-lactamase gene (n) |
---|---|---|---|---|---|
Australia | 30 | 5 (16.7) | 5 (100) | - | OXA-23 (5) |
China | 76 | 53 (69.7) | 51 (96.2) | - | OXA-23 (51) |
Hong Kong | 16 | 10 (62.5) | 10 (100) | - | OXA-23 (10) |
Japan | 41 | 1 (2.4) | 1 (100) | - | OXA-23 (1) |
Korea, South | 41 | 33 (80.5) | 31 (93.9) | NDM-1 (1) | OXA-23 (30) |
Malaysia | 56 | 44 (78.6) | 43 (97.7) | - | OXA-23 (43) |
Philippines | 55 | 24 (43.6) | 23 (95.8) | - | OXA-23 (23), OXA-58 (2) |
Taiwan | 37 | 25 (67.6) | 24 (96.0) | - | OXA-23 (17), OXA-58 (1), OXA-72 (6) |
Thailand | 50 | 37 (74.0) | 37 (100) | - | OXA-23 (35), OXA-58 (2) |
Discussion
- Rossolini GM
- Bochenska M
- Fumagalli L
- Dowzicky M.
World Health Organization. Global antimicrobial resistance and use surveillance system (GLASS) report, 2021, https://www.who.int/publications/i/item/9789240027336; 2021 [accessed 01 February 2022].
Australian Commission on Safety and Quality in Health Care. AURA 2021: fourth Australian report on antimicrobial use and resistance in human health, https://www.safetyandquality.gov.au/our-work/antimicrobial-resistance/antimicrobial-use-and-resistance-australia-surveillance-system/aura-2021; 2021 [accessed 01 February 2022].
- Álvarez-Marín R
- López-Cerero L
- Guerrero-Sánchez F
- Palop-Borras B
- Rojo-Martín MD
- Ruiz-Sancho A
- et al.
- Hamidian M
- Nigro SJ.
- Ku YH
- Yu WL.
Declaration of competing interest
Funding
Ethical approval
Acknowledgments
Author contributions
Appendix. Supplementary materials
References
- Clonal spread of multidrug-resistant Acinetobacter baumannii in eastern Taiwan.J Microbiol Immunol Infect. 2012; 45: 37-42https://doi.org/10.1016/j.jmii.2011.09.019
- Multicenter surveillance of antimicrobial susceptibilities and resistance mechanisms among Enterobacterales species and non-fermenting gram-negative bacteria from different infection sources in Taiwan from 2016 to 2018.J Microbiol Immunol Infect. 2022; 55: 463-473
- In vitro activity of cefiderocol, cefepime/enmetazobactam, cefepime/zidebactam, eravacycline, omadacycline, and other comparative agents against carbapenem-non-susceptible Pseudomonas aeruginosa and Acinetobacter baumannii isolates associated from bloodstream infection in Taiwan between 2018-2020.J Microbiol Immunol Infect. 2022; 55: 888-895https://doi.org/10.1016/j.jmii.2021.08.012
- Adaptations of carbapenem resistant Acinetobacter baumannii (CRAB) in the hospital environment causing sustained outbreak.J Med Microbiol. 2021; 70001345https://doi.org/10.1099/jmm.0.001345
- Impact of bloodstream infections caused by carbapenem-resistant gram-negative pathogens on ICU costs, mortality and length of stay.Infect Prev Pract. 2019; 1100020https://doi.org/10.1016/j.infpip.2019.100020
- A comprehensive and contemporary "snapshot" of β-lactamases in carbapenem resistant Acinetobacter baumannii.Diagn Microbiol Infect Dis. 2021; 99115242https://doi.org/10.1016/j.diagmicrobio.2020.115242
- Critical analysis of antibacterial agents in clinical development.Nat Rev Microbiol. 2020; 18: 286-298https://doi.org/10.1038/s41579-020-0340-0
- Epidemiological situation, laboratory capacity and preparedness for carbapenem-resistant Acinetobacter baumannii in Europe, 2019.Euro Surveill. 2020; 252001735https://doi.org/10.2807/1560-7917.ES.2020.25.45.2001735
- Mechanisms protecting Acinetobacter baumannii against multiple stresses triggered by the host immune response, antibiotics and outside-host environment.Int J Mol Sci. 2020; 21: 5498https://doi.org/10.3390/ijms21155498
- Emergence, molecular mechanisms and global spread of carbapenem-resistant Acinetobacter baumannii.Microb Genom. 2019; 5e000306https://doi.org/10.1099/mgen.0.000306
- Acinetobacter baumannii antibiotic resistance mechanisms.Pathogens. 2021; 102001735https://doi.org/10.3390/pathogens10030373
- Multidrug-resistant Acinetobacter baumannii as an emerging concern in hospitals.Mol Biol Rep. 2021; 48: 6987-6998https://doi.org/10.1007/s11033-021-06690-6
- The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii.FEMS Microbiol Lett. 2006; 258: 72-77https://doi.org/10.1111/j.1574-6968.2006.00195.x
- Trends of major antimicrobial resistance phenotypes in Enterobacterales and Gram-negative non-fermenters from ATLAS and EARS-net surveillance systems: Italian vs. European and global data, 2008–2018.Diagn Microbiol Infect Dis. 2021; 101115512https://doi.org/10.1016/j.diagmicrobio.2021.115512
- Global trends of antimicrobial susceptibility to ceftaroline and ceftazidime-avibactam: a surveillance study from the ATLAS program (2012–2016).Antimicrob Resist Infect Control. 2020; 9: 166https://doi.org/10.1186/s13756-020-00829-z
ATLAS Surveillance Program. Antimicrobial Testing Leadership and Surveillance, https://www.atlas-surveillance.com; 2021 [accessed 01 February 2022].
- In vitro activity of ceftazidime-avibactam against Enterobacterales and Pseudomonas aeruginosa isolates collected in Latin America as part of the ATLAS global surveillance program, 2017–2019.Braz J Infect Dis. 2021; 25101647https://doi.org/10.1016/j.bjid.2021.101647
- Performance standards for antimicrobial susceptibility testing.31st ed. Pennsylvania: Clinical and Laboratory Standars Institute, 2021 (CLSI supplement M100)
- Antimicrobial activity of cefoperazone-sulbactam tested against Gram-negative organisms from Europe, Asia-Pacific, and Latin America.Int J Infect Dis. 2020; 91: 32-37https://doi.org/10.1016/j.ijid.2019.11.006
- Effectiveness and safety of high dose tigecycline for the treatment of severe infections: a systematic review and meta-analysis.Adv Ther. 2020; 37: 1049-1064https://doi.org/10.1007/s12325-020-01235-y
- Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology.Clin Microbiol Infect. 2006; 12: 826-836https://doi.org/10.1111/j.1469-0691.2006.01456.x
- Building communication networks: international network for the study and prevention of emerging antimicrobial resistance.Emerg Infect Dis. 2001; 7: 319-322https://doi.org/10.3201/eid0702.010235
World Health Organization. Global antimicrobial resistance and use surveillance system (GLASS) report, 2021, https://www.who.int/publications/i/item/9789240027336; 2021 [accessed 01 February 2022].
Australian Commission on Safety and Quality in Health Care. AURA 2021: fourth Australian report on antimicrobial use and resistance in human health, https://www.safetyandquality.gov.au/our-work/antimicrobial-resistance/antimicrobial-use-and-resistance-australia-surveillance-system/aura-2021; 2021 [accessed 01 February 2022].
- Distribution and molecular characterization of Acinetobacter baumannii international clone II lineage in Japan.Antimicrob Agents Chemother. 2018; 62 (-17): e02190https://doi.org/10.1128/AAC.02190-17
- Effective strategies to prevent in-hospital infection in the emergency department during the novel coronavirus disease 2019 pandemic.J Microbiol Immunol Infect. 2021; 54: 120-122https://doi.org/10.1016/j.jmii.2020.05.006
- Co-infections among patients with COVID-19: the need for combination therapy with non-anti-SARS-CoV-2 agents?.J Microbiol Immunol Infect. 2020; 53: 505-512https://doi.org/10.1016/j.jmii.2020.05.013
- Trends and correlation between antibacterial consumption and carbapenem resistance in gram-negative bacteria in a tertiary hospital in China from 2012 to 2019.BMC Infect Dis. 2021; 21: 444https://doi.org/10.1186/s12879-021-06140-5
- Do specific antimicrobial stewardship interventions have an impact on carbapenem resistance in Gram-negative bacilli? a multicentre quasi-experimental ecological study: time-trend analysis and characterization of carbapenemases.J Antimicrob Chemother. 2021; 76: 1928-1936https://doi.org/10.1093/jac/dkab073
- Emergence of carbapenem-resistant non-baumannii species of Acinetobacter harboring a blaOXA-51-like gene that is intrinsic to A. baumannii.Antimicrob Agents Chemother. 2012; 56: 1124-1127https://doi.org/10.1128/AAC.00622-11
- Acinetobacter baumannii: emergence of a successful pathogen.Clin Microbiol Rev. 2008; 21: 538-582https://doi.org/10.1128/CMR.00058-07
- Carbapenem resistance in Acinetobacter baumannii: the molecular epidemic features of an emerging problem in health care facilities.J Infect Dev Ctries. 2009; 3: 335-341https://doi.org/10.3855/jidc.240
- Genetic environment of the KPC gene in Acinetobacter baumannii ST2 clone from Puerto Rico and genomic insights into its drug resistance.J Med Microbiol. 2016; 65: 784-792https://doi.org/10.1099/jmm.0.000289
- Detection of KPC in Acinetobacter spp. in Puerto Rico.Antimicrob Agents Chemother. 2010; 54: 1354-1357https://doi.org/10.1128/AAC.00899-09
- Infectious Diseases Society of America guidance on the treatment of AmpC β-lactamase-producing Enterobacterales, carbapenem-resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia infections.Clin Infect Dis. 2022; 74: 2089-2114https://doi.org/10.1093/cid/ciab1013
- Polymyxin acute kidney injury: dosing and other strategies to reduce toxicity.Antibiotics (Basel). 2019; 8: 24https://doi.org/10.3390/antibiotics8010024
- Colistin for pneumonia involving multidrug-resistant Acinetobacter calcoaceticus-Acinetobacter baumannii complex.J Microbiol Immunol Infect. 2020; 53: 854-865https://doi.org/10.1016/j.jmii.2019.08.007
- In vitro activity of imipenem/relebactam, meropenem/vaborbactam, ceftazidime/avibactam, cefepime/zidebactam and other novel antibiotics against imipenem-non-susceptible gram-negative bacilli from Taiwan.J Antimicrob Chemother. 2021; 76: 2071-2078https://doi.org/10.1093/jac/dkab141
- Synergistic Effect of ceftazidime-avibactam with meropenem against panresistant, carbapenemase-harboring Acinetobacter baumannii and Serratia marcescens investigated using time-kill and disk approximation assays.Antimicrob Agents Chemother. 2019; 63 (-18): e02367https://doi.org/10.1128/AAC.02367-18
- In vitro activities of ceftazidime/avibactam alone or in combination with antibiotics against multidrug-resistant Acinetobacter baumannii isolates.J Glob Antimicrob Resist. 2019; 17: 137-141https://doi.org/10.1016/j.jgar.2018.12.004
- Cefoperazone/sulbactam: new composites against multiresistant gram negative bacteria?.Infect Genet Evol. 2021; 88104707https://doi.org/10.1016/j.meegid.2021.104707
Article info
Publication history
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy