

PII: S1201-9712(22)00654-3
DOI: https://doi.org/10.1016/j.ijid.2022.12.017
Reference: IJID 6545

To appear in: International Journal of Infectious Diseases

Received date: 17 October 2022
Revised date: 12 December 2022
Accepted date: 13 December 2022

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Nuredin I. Mohammed¹, Grant Mackenzie¹,²,³, Esu Ezeani¹, Mamadi Sidibeh¹, Lamin Jammeh¹, Golam Sarwar¹, Aji Kumba Folawiyo Saine¹, Bakary Sonko¹, Pierre Gomez¹, Bai Lamin Dondeh¹, M. Jahangir Hossain¹, Momodou Jasseh¹, Effua Usuf¹, Andrew M. Prentice¹, David Jeffries¹, Umberto Dalessandro¹, Anna Roca¹

¹MRC Unit The Gambia at the London School of Hygiene & Tropical Medicine
²Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine
³Murdoch Children’s Research Institute, Melbourne, Australia

Corresponding author:
Anna Roca: aroca@mrc.gm

Alternative corresponding author:
Nuredin I. Mohammed: nuredin.mohammed@lshtm.ac.uk
Estimating pandemic related excess mortality in sub-Saharan Africa (SSA) entails additional challenges. These include lack of reliable death registration systems and limited testing capacity in most SSA. Time-series analysis on local HDSS data may provide opportunity to address the gap in information during pandemics. Using The Gambia HDSS, we show that there was little evidence of overall excess mortality in 2020. However, excess mortality may have occurred among vulnerable age groups.

ABSTRACT

Background: Estimates for coronavirus disease 2019 (COVID-19) related excess mortality for African populations using local data are needed to design and implement effective control policies.

Methods: We applied time-series analysis using data from three Health and Demographic Surveillance Systems (HDSSs) in The Gambia (Basse, Farafenni and Keneba) to examine pandemic-related excess mortality during 2020, when the first SARS-CoV-2 wave was observed, compared to pre-pandemic period (2016-2019).

Results: Across the three sites, average mortality during the pre-pandemic period and the total deaths during 2020 were 1512 and 1634, respectively (Basse: 1099 vs 1179, Farafenni: 316 vs 351, Keneba: 98 vs 104). The overall crude mortality rates per 100,000 (95%CI) were 589(559, 619) and 599(571, 629) for the pre-pandemic
and 2020 periods, respectively. The adjusted excess mortality rate was 8.8(-34.3, 67.6) per 100,000 person-months with the adjusted rate ratio (aRR)=1.01(0.94,1.11). The age stratified analysis showed excess mortality in Basse for infants [aRR=1.22(1.04, 1.46)] and in Farafenni for the 65+ years age group [aRR=1.19(1, 1.44)].

Conclusions: We did not find significant excess overall mortality in 2020 in The Gambia. However, some age groups may have been at risk of excess death. Public health response in countries with weak health systems needs to consider vulnerable age groups and the potential for collateral damage.

Funding: MRC-UKRI MC_PC_20028

Keywords: Excess mortality, Health and Demographic Surveillance Systems, COVID-19, Africa, The Gambia

INTRODUCTION

In January 2020, COVID-19 was declared a Public Health Emergency of International Concern (PHEIC). At the time, 7,818 cases and 170 deaths were reported in 19 countries, mainly in Asia [1]. Almost a year later, COVID-19 had spread across the world and caused about 278 million cases and 5.4 million deaths. Despite the extent of the pandemic, Africa, which accounts for approximately 16% of the world population, had been relatively spared by the pandemic as it accounted only for 3% of both cases (7 million) and deaths (0.16 million) [2]. This could be partly explained by the predilection of COVID-19 to cause severe disease in the elderly and Africa’s relatively young population where children and young adults less than 25 years of age represent more than 60% of the total population [3,4].
Deaths associated with the COVID-19 pandemic have been significantly underestimated across the world at the start of the epidemic. Even with robust surveillance, accounted fatalities do not include the so-called ‘indirect’ deaths due to pandemic-related changes in health care systems and in individual health seeking behaviours but not caused by infection with SARS-CoV-2. The sum of direct (viral infections) and indirect deaths would reflect the whole pandemic-related mortality. One approach to measuring the impact of the pandemic on overall mortality is to calculate what has been termed as ‘excess mortality’. This can be defined as an unusual mortality increase during a specific period, in a given population above and beyond what we would have expected to see under ‘normal’ conditions [5,6]. Such estimates are calculated by comparing expected number of deaths due to all causes (based on mortality rates before the pandemic) versus observed number of deaths or, in the absence of robust empirical data, estimated deaths by mathematical models [7]. In high income countries, estimates suggest that the true death toll related to the pandemic may have been at least 2-4 fold higher than official reports [8], with some variations according to the approach used for the estimations. Indeed, by January 2022, the estimated toll of directly-related COVID-19 deaths was about 5.5 million, whereas different models estimated the COVID-19 related deaths at 18.2 million (95% CI 17.1, 19.6) [7], 12.6 million (95% CI 9.1, 18.6) [8] and 19.4 million (95% CI 12, 22.4) [8].

Estimating the direct and indirect effects of COVID-19 related mortality in sub-Saharan Africa (SSA) entails additional challenges. On the one hand, poor surveillance in most SSAs countries would underestimate the true burden as shown by sero-prevalence surveys that suggest transmission has been as high, if not higher, than in other continents [9]. On the other hand, the lack of death registration
in most SSA countries is an additional difficulty for estimating the overall excess of deaths. Therefore, estimates are mainly based on assumptions used for building predictive mathematical models whose results rely on the availability and quality of data.

Here we used data from three regionally distinct Health and Demographic Surveillance Systems (HDSS) covering approximately 10% of The Gambian population to calculate excess mortality in 2020, the year of the first COVID-19 epidemic wave.

METHODS
The Gambia and the country response to the COVID-19 pandemic

The Gambia is a small West African country, bordering Senegal except for its coast on the Atlantic Ocean. In 2020, the total estimated population was about 2.42 million, with median age of 17.8 years and life expectancy of 63.3 years [10]. The top eight causes of mortality include lower respiratory infection, ischemic heart disease, neonatal disorders, HIV/AIDS, stroke, tuberculosis, malaria and diarrheal diseases [11] similar to reports from the Farafenni HDSS data [12].

Shortly after the first COVID-19 case was diagnosed on March 17, 2020, the country closed its international land, sea, and air borders.; On March 27, 2020 a state of emergency was declared, which included closing of schools, non-essential shops, places of worship, and many workplaces. Initial SARS-CoV-2 testing by PCR aimed at identifying imported cases and tracing and isolating contacts. As the epidemic progressed, the Ministry of Health established testing facilities at strategic densely
populated locations. Demand for testing services was low and attempts to raise awareness had limited impact, which may have led to the intense transmission, albeit mild, later in 2020 as described elsewhere [13].

A rapid increase in cases only started in July 2020, and by December 31, 2020, 3797 cases and 124 deaths had been reported [14].

HDSS platforms

The MRCG at LSHTM is running three HDSS platforms - namely Basse [15], Farafenni [12] and West Kiang (Keneba) [16] – in largely rural communities and covering a population of more than 250,000 individuals (Figure 1). All households in the HDSS area are visited at least once every 4 months. Deaths, births, migrations, pregnancies, marriages, and vaccination records are updated during these visits. Individuals are defined as resident if they are found to be living in the HDSS geographic area on two consecutive visits. Data collection in 2020 was affected by the COVID-19 pandemic in all three sites, resulting in only two rounds of enumeration instead of the usual three per year.

Data and statistical analysis

Data were extracted from the three HDSSs for the period between January 1, 2016 and December 31, 2020 to allow for the most complete reporting of deaths during the observation period. Data extracted included date of birth, date of death, site of residence and population count. The years 2016-2019 were considered pre-pandemic while 2020 was the pandemic period. Mid-year population was calculated counting all individuals who were registered as resident in each HDSS database on July 1st of each year. Age in completed years was categorised in four groups (<1, 1-
17, 18-64 and 65+) for stratified analysis. Mortality counts were aggregated by month to create the time series data.

We calculated average annual mortality before the pandemic and subtracted it from the mortality count in 2020 to obtain the ‘crude’ number of excess death estimate during 2020. Excess mortality for each month in 2020 was assessed using P-scores [5], percentage difference between the reported and projected number of deaths, calculated as:

\[
P\text{-score}_m = \frac{\text{Observed deaths}_m - \text{Expected deaths}_m}{\text{Expected deaths}_m}
\]

where the expected number of deaths are approximated by the average mortality count at each month \(m \) over the pre-pandemic period.

For our primary analysis, we used an interrupted time-series approach [17] to compare mortality rates between the pre-pandemic period (2016-2019) versus 2020. We adjusted for seasonality using harmonics (sine/cosine pairs). Furthermore, in a sensitivity analysis we explored adjusting for seasonality using dummy variables for calendar month and adding a time trend. We used Akaike Information Criteria (AIC) [18] to compare fitting models (lowest AIC).

Let \(Y_t \sim \text{Poisson}(\mu_t) \) be monthly death count with Poisson distribution, then our time-series model can be given as:

\[
\log(\mu_t) = \beta_0 + \beta_1 X_{1t} + \beta_2 X_{2t} + f(s)
\]

where \(\mu_t \) is the expected number of monthly deaths; \(t \) is time/months since the start of the study; \(X_{1t} \) is dummy variable for pre/during pandemic period; \(X_{2t} \) is \(t \) (scaled) for time trend assessment; \(\beta_0 \) is the offset to account for population size (which is natural logarithm of the population size); \(\beta_1 \) and \(\beta_2 \) are the log(RRs) corresponding to
X_1 and X_2 respectively; $f(s)$ represent adjustment for seasonality either using harmonics (sine/cosine pairs) or dummy variables for calendar months. Excess mortality was calculated as $(RR-1)*E$ where E is the expected (counterfactual) mortality in the absence of the pandemic. Analyses were repeated stratifying by age group for all HDSS sites together and for each HDSS site. To account for overdispersion, we assumed negative binomial distribution for the monthly mortality count data for all models fitted in this study. R/RStudio [19] and Stata [20] were used to perform all data analyses.

Ethical approval

Data collection as part of the three HDSS sites have ethical approval from The Gambian Government/MRCG at LSHTM Joint Ethics committee.

RESULTS

Between 2016 and 2019, the total average annual population across the 3 HDSS sites was 256843 individuals. During these four years we detected 6049 deaths: 4395 in Basse, 1263 in Farafenni, and 391 in Keneba. The average number of deaths per year was 1512, ranging from 1438 in 2016 to 1606 in 2018. In 2020, the average population was 272620 and 1634 deaths were recorded (See details in Table 1).

Crude excess mortality

The overall crude mortality rates were 589 (95%CI 559, 619) and 599 (571, 629) per 100,000 for the pre-pandemic and 2020 period, respectively. This corresponds to an
excess mortality rate of 11.1 (31, 52) per 100,000 population [RR = 1.02 (0.95, 1.09)]. The point estimates widely varied between the HDSS sites, but in none of them was the excess of deaths significant (Table 2). By age groups, again there was no significant excess mortality for any comparison although the point estimates differed between age groups (Table 2). For example, RR (95% CIs) over all sites were 1.11 (0.91, 1.35), 0.93 (0.77, 1.12), 1.00 (0.89, 1.12) and 1.08 (0.95, 1.22) among infants (<1 years of age), 1-17 years, 18-64 years and 65+ years age-groups. Peaks in excess deaths occurred at slightly different calendar periods in the different HDSS sites - in July 2020 for Farafenni (P-score approximately 78%), in August 2020 for Keneba (P-score approximately 100%) and in August/September 2020 for Basse (P-score approximately 42%) (Figure 2).

Adjusted excess mortality estimates

In the time series analysis adjusted for seasonality, we did not find significant difference in mortality rates during 2020 compared to the pre-pandemic period [adjusted excess mortality = 8.8 (-34.3, 67.6) per 100,000 person-months and adjusted RR (aRR) = 1.01 (0.94, 1.11)] (Table 3, Figure 3). However, excess mortality was found among infants in the Basse HDSS [adjusted excess mortality = 492.4 (65.5, 1213.4) per 100,000 person-months and aRR=1.22 (1.04,1.46)] and the Farafenni HDSS for older adults [adjusted excess mortality = 1083.4 (22.7, 2932.9) per 100,000 person-months and aRR=1.19 (1.00,1.44)] (Table 3, Figure 4). Results for all models compared in the sensitivity analyses with corresponding AIC values can be found in Supplementary Appendix (Table S1).

DISCUSSION

According to our time-series analysis of HDSS data that cover about 10% of the whole Gambian population, we did not find significant overall excess mortality
associated with the COVID-19 pandemic in 2020 when the first wave occurred. This result is consistent with the official number of 124 COVID-19 deaths reported by the end of 2020 [14], and the recently released WHO model that estimates 41 (-6, 94) excess deaths per 100,000 for The Gambia in 2020 [21]. However, other modelling approaches provide different results, with a country estimated excess mortality ranging between 2154 and 6340 [7,22,23] at a time when the number of reported COVID-19 related deaths was 343 (January 2022). Those other models probably overestimated COVID-19 excess mortality as they are based on data generated in high income countries and directly applied to other regions. However, we estimated some excess mortality in specific age groups (infants and individuals older than 65 years) in some geographical areas.

Not detecting excess mortality in 2020 in The Gambia is also in agreement with a study conducted in rural Kenya that showed no excess of deaths after the first two waves of COVID-19 [24]. The Gambia and Kenya results have been produced by analysing HDSS data. This is also generally in agreement with the observation that the SSA region may have had a similar level of COVID-19 infections than in the rest of the world, but fewer deaths [25]. A limitation of this analysis may be the under-representation of urban areas in these HDSS because urban areas are generally the first to be exposed to the virus due to more frequent international contacts. However, it has been shown that the infection can spread from urban to rural areas, resulting in a similar burden, even if the epidemic affects rural areas later than urban areas [26,27]. The first SARS-CoV-2 wave in The Gambia probably started from infected individuals who travelled from Senegal as international flights were suspended and Gambian borders are extremely porous [28]. Infected individuals may have entered from Senegal through Farafenni, which is on the trans-Gambian road linking Dakar,
the capital, with Ziguinchor, in southern Senegal [29] as also suggested by the genomic analysis [30]. Indeed, the p-scores of excess mortality peaked earlier in Farafenni than in the other two HDSS sites. Infant mortality in Basse was more than 20% higher in 2020 than before the pandemic and this could be attributed to the disruption of health care provision caused by the pandemic. Indeed, access to health facilities and vaccination clinics at the time of borders closure and lockdown was lower than in the previous five years [31]. For example, the total number of infants attending outpatient clinics decreased by 35% in 2020 compared to 2019 [32]. In Farafenni, mortality in the oldest age group (65+ years) increased by 19% compared to pre-pandemic years. Risk of complications and death by COVID-19 is higher in the older age groups, particularly if there are co-morbidities, whose frequency increases with age. For example, in a systematic review and meta-analysis study, COVID-19 infection fatality ratio has been reported to increase progressively with age to 1.4% at age 65, 4.6% at age 75, and 15% at age 85 [33]. Such excess mortality may either be due to the direct effect of the infection and/or by the disruption in health care provision or reluctance to seek health care in health facilities. Nevertheless, it is unclear why this is observed only in Farafenni and not in the other HDSS as the age distribution and prevalence of co-morbidities do not vary across The Gambia [32,34]. Therefore, some specific factors related to the population in the Farafenni region, provision of or access to health care may have affected the oldest age group in Farafenni. Other potential explanations may include lower data completeness for the oldest age group in other HDSSs or a lower incidence of Sars-Cov-2 according both to age-groups and HDSSs. However, a difference in data completeness between HDSS sites is unlikely because the methodologies, control checks, team and management are more or less similar.
across sites. Overall, future public health responses to pandemics may need to consider such indirect effects, particularly for vulnerable groups such as young children and the oldest age groups.

Additional limitations of our analysis should be considered. The HDSSs are large databases but the quality of the data tends to be lower than in active study cohorts or clinical trials. In addition, it is key for the analysis of time trends that case ascertainment is collected homogeneously over the years. In 2020, the HDSS team was able to complete only two rounds of visits, rather than the usual three, and may have missed some deaths, particularly among infants. This is despite our latest data extraction conducted in February 2022 in an attempt to allow for more updates and data cleaning from the household visits. This may have compromised the completeness of the data and limited our ability to determine excess mortality, particularly in this youngest age group.

In conclusion, we did not find significant overall excess of mortality at the time of the COVID-19 epidemic in 2020 in The Gambia. There was probably some excess of deaths in infants and older adults, in some geographical areas, suggesting indirect collateral damage may have had some role. There is a need to understand why the overall effect of the pandemic in The Gambia in 2020, as well as in other SSA countries, was less severe than predicted. In addition, public health response to this and other pandemics need to consider the potential for indirect collateral damage, particularly in countries with weak health systems. Mortality surveillance to understand the effect of subsequent pandemic waves in The Gambia should continue.

Contributors
NIM and AR contributed to study conception and design, analysis of data, interpretation of results, and drafting and editing of the paper. DJ contributed to the analysis of data and interpretation of results. UDA, EU, GM and AP contributed to study conception and design, data interpretation, drafting and editing of the paper. MJ contributed to data acquisition, interpretation of the results, drafting and editing of the paper. JH contributed to interpretation of the results, drafting and editing of the paper. EE contributed to data acquisition, drafting and editing of the paper. BLD, MS, LJ, SG, AKFS, BS and PG contributed to data acquisition, management, and curation. All authors read and approved the final draft.

Acknowledgments
We would like to acknowledge those staff who contributed to the HDSS platforms including office and field staff over the years. We also want to thank all the residents of the HDSS areas.

Funding
The UK Medical Research Council (MRC) has provided core financial support for the maintenance of the HDSSs. This study was supported funded by UK-RI (grant number MC_PC_20028).

Conflict of interest: None declared.

REFERENCES

Figure 1: Map of The Gambia with the three HDSS sites
Figure 2: Excess mortality (%) by site for each month in 2020 compared to the period 2016-2019 (P-scores)

Figure 3: Mortality rate estimates per 100,000 person-months pre (2016-2019) and ‘during pandemic (2020 only) by HDSS site with corresponding RR (95%CIs). Note: Green- estimates in the absence of pandemic/counterfactual; Red- pandemic period estimates; models here adjusted for seasonality using harmonics.
Figure 4: Age stratified excess mortality per 100,000 person-months in 2020 by HDSS site (All, Basse, Farafenni, Keneba).
Note: Green - estimates in the absence of pandemic/counterfactual; Red - pandemic period estimates; models here adjusted for seasonality using harmonics.
Table 1: Observed mortality counts by year and HDSS site

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Basse</td>
<td></td>
<td>1014</td>
<td>1127</td>
<td>1173</td>
<td>1081</td>
<td>1179</td>
<td>5574</td>
</tr>
<tr>
<td>Farafenni</td>
<td></td>
<td>299</td>
<td>309</td>
<td>336</td>
<td>319</td>
<td>351</td>
<td>1614</td>
</tr>
<tr>
<td>Keneba</td>
<td></td>
<td>125</td>
<td>87</td>
<td>97</td>
<td>82</td>
<td>104</td>
<td>495</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1438</td>
<td>1523</td>
<td>1606</td>
<td>1482</td>
<td>1634</td>
<td>7683</td>
</tr>
</tbody>
</table>

Table 2: Summary of mortality and population counts with crude estimates for excess deaths

<table>
<thead>
<tr>
<th>Age group</th>
<th>Site</th>
<th>Average Annual Deaths 2016-19</th>
<th>Average annual Population 2016-19</th>
<th>Deaths 2020</th>
<th>Population 2020</th>
<th>Crude Rate 2016-19 (95%CI)</th>
<th>Crude Rate 2020 (95%CI)</th>
<th>Crude Rate difference (95%CI)</th>
<th>Crude Rate Ratio (95%CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>All</td>
<td>1512.25</td>
<td>256842.8</td>
<td>1634</td>
<td>272620</td>
<td>589 (559, 619)</td>
<td>599 (571, 629)</td>
<td>11 (-31, 52)</td>
<td>1.02 (.95, 1.09)</td>
</tr>
<tr>
<td></td>
<td>Basse</td>
<td>1098.75</td>
<td>186229</td>
<td>1179</td>
<td>198373</td>
<td>590 (556, 626)</td>
<td>594 (561, 629)</td>
<td>4 (-44, 53)</td>
<td>1.01 (.93, 1.09)</td>
</tr>
<tr>
<td></td>
<td>Farafenni</td>
<td>315.75</td>
<td>56014.5</td>
<td>351</td>
<td>59944</td>
<td>564 (504, 630)</td>
<td>586 (526, 650)</td>
<td>21 (-66, 109)</td>
<td>1.04 (.89, 1.21)</td>
</tr>
<tr>
<td></td>
<td>Keneba</td>
<td>97.75</td>
<td>14599.25</td>
<td>104</td>
<td>14303</td>
<td>671 (545, 818)</td>
<td>727 (594, 881)</td>
<td>56 (-137, 249)</td>
<td>1.08 (.81, 1.44)</td>
</tr>
<tr>
<td><1</td>
<td>All</td>
<td>192</td>
<td>8271.5</td>
<td>231</td>
<td>8988</td>
<td>2321 (2004, 2674)</td>
<td>2570 (2249, 2924)</td>
<td>249 (-218, 715)</td>
<td>1.11 (.91, 1.35)</td>
</tr>
<tr>
<td></td>
<td>Basse</td>
<td>132.25</td>
<td>5972</td>
<td>178</td>
<td>6560</td>
<td>2210 (1849, 2621)</td>
<td>2713 (2329, 3143)</td>
<td>503 (-46, 1052)</td>
<td>1.23 (97, 1.55)</td>
</tr>
<tr>
<td></td>
<td>Farafenni</td>
<td>43</td>
<td>1877.5</td>
<td>44</td>
<td>1995</td>
<td>2290 (1657, 3085)</td>
<td>2206 (1603, 2961)</td>
<td>-85 (-1030, 860)</td>
<td>.96 (.62, 1.5)</td>
</tr>
<tr>
<td></td>
<td>Keneba</td>
<td>16.75</td>
<td>422</td>
<td>9</td>
<td>433</td>
<td>4028 (2347, 6450)</td>
<td>2079 (950, 3946)</td>
<td>-1950 (-4297, 398)</td>
<td>.52 (.2, 1.22)</td>
</tr>
</tbody>
</table>
Table 3 Estimated excess deaths and RRs based on models* adjusting for seasonality

<table>
<thead>
<tr>
<th>Age group</th>
<th>Site</th>
<th>Excess deaths (95%CI)</th>
<th>Excess Mortality Rate Per 100,000 (95%CI)</th>
<th>RR (95%CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>All</td>
<td>23.9 (-93.4, 184.2)</td>
<td>8.8 (-34.3, 67.6)</td>
<td>1.01 (0.94, 1.11)</td>
</tr>
<tr>
<td></td>
<td>Basse</td>
<td>2.2 (-99.9, 151.1)</td>
<td>1.1 (-50.4, 76.2)</td>
<td>1 (0.91, 1.12)</td>
</tr>
<tr>
<td></td>
<td>Farafenni</td>
<td>12.4 (-21.3, 63)</td>
<td>20.7 (-35.5, 105.1)</td>
<td>1.04 (0.93, 1.17)</td>
</tr>
<tr>
<td></td>
<td>Keneba</td>
<td>8.6 (-10.6, 43.6)</td>
<td>60.1 (-74.1, 304.8)</td>
<td>1.09 (0.86, 1.37)</td>
</tr>
<tr>
<td><1</td>
<td>All</td>
<td>23.2 (-11.9, 78.9)</td>
<td>258.1 (-132.4, 877.8)</td>
<td>1.11 (0.93, 1.32)</td>
</tr>
<tr>
<td></td>
<td>Basse</td>
<td>32.3 (4.3, 79.6)</td>
<td>492.4 (65.5, 1213.4)</td>
<td>1.22 (1.04, 1.46)</td>
</tr>
<tr>
<td></td>
<td>Farafenni</td>
<td>-1.7 (-11, 24.9)</td>
<td>-85.2 (-551.4, 1248.1)</td>
<td>0.96 (0.66, 1.39)</td>
</tr>
<tr>
<td></td>
<td>Keneba</td>
<td>-8 (-7.8, 1.3)</td>
<td>-1847.6 (-1801.4, 300.2)</td>
<td>0.53 (0.26, 1.05)</td>
</tr>
<tr>
<td>1-17</td>
<td>All</td>
<td>-20.1 (-47.2, 30.7)</td>
<td>-14.7 (-34.5, 22.4)</td>
<td>0.92 (0.77, 1.11)</td>
</tr>
<tr>
<td></td>
<td>Basse</td>
<td>-16.9 (-40.7, 35)</td>
<td>-16.9 (-40.6, 34.9)</td>
<td>0.91 (0.74, 1.15)</td>
</tr>
<tr>
<td></td>
<td>Farafenni</td>
<td>-6.7 (-12.9, 12.8)</td>
<td>-22.9 (-44, 43.7)</td>
<td>0.86 (0.62, 1.2)</td>
</tr>
<tr>
<td></td>
<td>Keneba</td>
<td>1.7 (-2.1, 24.2)</td>
<td>23.1 (-28.6, 329.5)</td>
<td>1.18 (0.57, 2.34)</td>
</tr>
<tr>
<td>18-64</td>
<td>All</td>
<td>0.4 (-51.1, 73.4)</td>
<td>0.3 (-43.2, 62.1)</td>
<td>1 (0.91, 1.11)</td>
</tr>
<tr>
<td></td>
<td>Basse</td>
<td>-0.7 (-48.1, 71.4)</td>
<td>-0.8 (-55.8, 82.8)</td>
<td>1 (0.89, 1.13)</td>
</tr>
<tr>
<td></td>
<td>Farafenni</td>
<td>-3.7 (-19.9, 27.5)</td>
<td>-14 (-75.3, 104)</td>
<td>0.97 (0.81, 1.18)</td>
</tr>
<tr>
<td></td>
<td>Keneba</td>
<td>3.3 (-4.5, 27.7)</td>
<td>58.7 (-80, 492.6)</td>
<td>1.13 (0.73, 1.74)</td>
</tr>
<tr>
<td>65+</td>
<td>All</td>
<td>40.3 (-15.3, 113.9)</td>
<td>476.2 (-180.8, 1345.9)</td>
<td>1.08 (0.97, 1.2)</td>
</tr>
<tr>
<td></td>
<td>Basse</td>
<td>9.6 (-29.4, 71.3)</td>
<td>179.2 (-548.9, 1331.2)</td>
<td>1.03 (0.9, 1.19)</td>
</tr>
<tr>
<td></td>
<td>Farafenni</td>
<td>23.9 (0.5, 64.7)</td>
<td>1083.4 (22.7, 2932.9)</td>
<td>1.19 (1, 1.44)</td>
</tr>
<tr>
<td></td>
<td>Keneba</td>
<td>5.7 (-5.7, 33.6)</td>
<td>632.6 (-632.6, 3729.2)</td>
<td>1.12 (0.85, 1.5)</td>
</tr>
</tbody>
</table>

* Assuming Negative Binomial distribution for over-dispersed mortality count data and harmonics (sine/cosine pairs) to account for seasonality.