Multiple Orientia clusters and Th1-skewed chemokine profile: A cross-sectional study in scrub typhus patients from Nepal

PII: S1201-9712(22)00660-9
DOI: https://doi.org/10.1016/j.ijid.2022.12.022
Reference: IJID 6550

To appear in: International Journal of Infectious Diseases

Received date: 9 September 2022
Revised date: 13 December 2022
Accepted date: 18 December 2022

Please cite this article as: Carina Chan-Song Münch, Bishnu Prashad Upadhaya, Binod Rayamajhee, Anurag Adhikari, Manuel Münch, Nora En-Nosse, Katharina Kowalski, Markus Eickmann, Christian Bauer, Krishna Das Manandhar, Christian Keller, Multiple Orientia clusters and Th1-skewed chemokine profile: A cross-sectional study in scrub typhus patients from Nepal, International Journal of Infectious Diseases (2022), doi: https://doi.org/10.1016/j.ijid.2022.12.022

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier Ltd on behalf of International Society for Infectious Diseases. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Multiple *Orientia* clusters and Th1-skewed chemokine profile:
A cross-sectional study in scrub typhus patients from Nepal

Short running head: Scrub Typhus in Nepal

Carina Chan-Song Münch¹,², Bishnu Prashad Upadhaya³, Binod Rayamajhee⁴,
Anurag Adhikari⁴, Manuel Münch⁵, Nora En-Nosse¹,²,
Katharina Kowalski¹, Markus Eickmann¹, Christian Bauer⁶,
Krishna Das Manandhar⁷, Christian Keller¹,²

¹ Institute for Virology, Philipps University Marburg, Germany
² German Center for Infection Research, Giessen-Marburg-Langen site, Germany
³ Central Diagnostic Laboratory, Kathmandu, Nepal
⁴ Department of Infection and Immunology, Kathmandu Research Institute for
Biological Sciences, Lalitpur, Nepal
⁵ Department of Neurology, University Hospital Marburg, Germany
⁶ Department of Gastroenterology, University Hospital Marburg, Germany
⁷ Central Department of Biotechnology, Tribhuvan University, Nepal

Corresponding author: Christian Keller, Institute of Virology, Philipps University
Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany, phone: +49-6421.28-21977. Mail: christian.keller@staff.uni-marburg.de

Key words
Scrub typhus, *Orientia tsutsugamushi*, Nepal, chemokines, Th1/Th2 polarization,
phylogeny
Abstract

Background

Scrub typhus is an emerging infectious disease in Asia, caused by Orientia tsutsugamushi (Ot). From Nepal, only scant data on the genetic epidemiology of this agent is available, and determinants of immunoregulation are poorly understood.

Methods

Patients (n=238) referred to the National Public Health Laboratory (Kathmandu, Nepal) from all over Nepal for suspected scrub typhus were enrolled upon positive IgM testing between July and October 2015. From Ot 16S and 47 kD PCR-positive samples, the variable domain I of the 56 kD gene was sequenced and phylogenetically analysed. T helper cell-associated cytokines (n=13) and chemokines (n=12) were quantified by multiplex bead arrays.

Results

In 93/238 (39.1%) IgM-positive samples, Ot DNA was detected by qPCR. Phylogenetic analysis of 56 kD sequences revealed 7 distinct clusters, 6 of them with high homologies to strains detected in other countries. The Th1-related cytokines IFN-γ and CXCL10 were strongly upregulated and correlated with bacteremia, while levels of Th2-associated chemokines were reduced. Bacteremia also correlated with concentrations of IL-6 and IL-10, but not TNF-α.

Conclusions

We identified a considerable genetic heterogeneity of human-pathogenic Ot strains circulating in Nepal. Acute Nepalese scrub typhus patients showed strong Th1 but impaired Th2 responses, especially on the chemokine level.
Introduction

Scrub typhus, an acute febrile illness caused by the obligate intracellular bacterium *Orientia tsutsugamushi* (*Ot*), is a chigger-transmitted tropical disease and one of the leading causes of undifferentiated febrile illness in South Asia. Scrub typhus was historically reported to be endemic to northern and eastern Asia and a portion of northern Australia, in an area referred to as the Tsutsugamushi triangle [1]. In recent years, an increased prevalence is on the rise throughout the plains of South Asia, encompassing Nepal’s [2] and Indian flatlands [3].

Until the devastating earthquake of April 25th, 2015, scrub typhus had only been anecdotally reported from Nepal [4,5]. The steep increase in cases in its aftermath suggested that the impact of an earthquake facilitated exposure of the population to perturbed soil dwelling vectors [6]. Intensified clinical research thereafter showed that Nepal had a previously unrecognized burden of scrub typhus [2,7,8]. Despite these advances, a surprising gap of knowledge on *Ot* genetic epidemiology in Nepal and the infection-associated human immune response has remained, and it was never studied whether a single strain may have caused the reported nationwide outbreak. Recently, one study reported *Ot* genotypes detected in patients from the Chitwan district, Nepal, which suggested the presence of one major dominant strain [8]. However, these rather local data cannot be regarded as representative of Nepal, which warrants further study of phylogenetic relationships of *Ot* strains in this country.

With its highly variable and immunodominant 56 kD surface protein, *Ot* has an appropriate gene target that is often used for phylogenetic analysis [9,10]. The 56 kD protein is also a vaccine candidate [11], which makes the collection of sequence information in emerging infection sites such as Nepal even more important.
O primarily infects tissue macrophages [12] and endothelial cells [13] in humans, but also other innate immune cells including dendritic cells and monocytes [12], which was also demonstrated *in vitro* and in mouse models [14,15]. Upon infection with *O*, monocytic cells respond with the induction of cytokines, including TNF-α, IL-1β, IL-6, and IL-10, and chemokines, e.g. IL-8, CCL2 and CXCL10 [16,17]. Increased levels of these cytokines in scrub typhus patients [18] are therefore thought to reflect a strong innate immune activation. In addition, T cells contribute to cytokine production in human scrub typhus: Increased levels of granzymes and IFN-γ levels in serum, as well as activated CD8+ T cells with PD-1^high^ and IL-7Ra^low^ phenotypes, are hallmarks of T cell activation during acute infection [19,20]. More specifically, IFN-γ is derived from antigen-specific CD4+ Th1 cells and CD8+ T cells that recognize peptides e.g. derived from the outer membrane proteins 56kD and ScaA [21]. In contrast, Th2 responses were found to be either absent or very weak in scrub typhus patients [21,22], while one recent study in acutely ill travelers found some evidence for increased Th2-related cytokines (IL-4, IL-5 and IL-13) [23]. Thus, current models suggest a mixed cytokine profile of innate pro-inflammatory, IL-10 and Th1 immune responses in acute scrub typhus, but the relationship to bacterial concentrations has not been worked out. A recent study demonstrated that monocyte-derived mediators, especially TNF-α, can activate the endothelium to express adhesion molecules and produce cytokines, while it, by itself, poorly reacts to *O* infection [24]. An excessive cytokine response is thus a critical factor in paving the way for endothelial pathology in scrub typhus. This is also reflected by the endothelial invasion of *O*, which is a hallmark of severe, fatal infection [13]. Indeed, increased levels of systemic cytokines (including IL-8 and TNF-α) have been found in severe infections and were associated with disease severity [18,25,26]. An interplay between cytokines and the endothelium is thus likely to influence the prognosis of *O* infection. Other severe complications in scrub typhus encompass
hepatitis and renal failure, acute respiratory distress syndrome, myocarditis, and meningoencephalitis [27].

In addition, it is poorly understood how the concentration of circulating bacteria relate to the host’s immune response. A better understanding of the complex immune responses elicited by Ot may help to develop new diagnostic algorithms that may better predict the disease prognosis as well as clinical complications.

The present study was conducted in a cohort of 238 acutely ill scrub typhus patients from 47 Nepalese districts. We provide data on the detection and quantification of Ot DNA in serum samples and report partial 56 kD sequences from 25 patients. Moreover, with the use of multiplex cytokine and chemokine analysis, we demonstrate distinct profiles in patients with and without bacteremia.
Methods

Patient recruitment and controls
Suspected scrub typhus patients with acute febrile illness who presented at the National Public Health Laboratory (Kathmandu, Nepal) were asked to be enrolled in the study between July and October, 2015. A scrub typhus diagnosis was made upon clinical suspicion and serological confirmation by a positive Scrub Typhus Detect™ IgM ELISA (InBios, Seattle, WA, USA). Serum samples were collected during routine diagnostic investigation; 2 mL of serum was frozen and kept at -80°C for further analysis. A total of n=238 individuals were enrolled. Patients originated from 47 different districts (Fig. 1). Control subjects were healthy, asymptomatic individuals enrolled by the Kathmandu Research Institute for Biological Sciences (KRIBS), as described elsewhere [28]. Serum samples were stored at -80°C until further analysis. All participants provided informed consent.

Real-time qPCR and conventional PCR
Nucleic acid was extracted from serum samples (0.2 mL) using the innuPREP Virus DNA/RNA Kit (Analytik Jena, Jena, Germany) on an automated Tecan extraction system (Tecan, Männedorf, Switzerland). Real-time qPCRs using the Ot-specific 16S rRNA and 47 kD genes as target were performed for molecular detection of Ot and quantification of bacterial DNA load [29,30]. For phylogenetic analysis, a fragment of the 56kD gene (ca. 400 bp) was amplified by conventional PCR as described by Mahajan et al.[10] Details are available in supplementary methods. The 56 kD sequences were submitted to NCBI GenBank (accession numbers ON236660-ON236684).

- 6 -
Quantification of cytokines and chemokines by multiplex bead array

Multiplex bead-based assays were performed for cytokine and chemokine profiling using LEGENDplex reagents (BioLegend, San Diego, CA, USA), according to the manufacturer's instructions.

A pilot study was conducted in n=30 acute samples (each with positive and negative PCRs) and n=8 controls to analyze the entire set of 12 Th cytokines and 13 proinflammatory chemokines. Based on initial analyses, a subset of cytokines (IL-6, IL-10, IFN-γ and TNF-α) and chemokines (MCP-1 (CCL2), RANTES (CCL5), IP-10 (CXCL10) and IL-8 (CXCL8)) was selected for manufacturing of customized bead panels (BioLegend). This subset was measured in a total of n=64 samples and n=50 controls. Protocol details are available in supplementary methods.

Statistical and phylogenetic analysis

Statistical analysis including unpaired t-test, linear regression, and Tukey’s multiple comparisons were performed using GraphPad Prism version 8. For phylogenetical analysis, a ClustalW multiple alignment with sequences retrieved from the NCBI database was created in Geneious software (version 11.1.5). The neighbor-joining tree approach was used for construction of the phylogenetic tree, using the Tamura-Nei model.
Results

The present study included n=238 patients (median age: 30 years [IQR 17-45]; sex ratio: 51% male to 49% female, Table 1) who were clinically suspected to have acute scrub typhus and were tested positive by Scrub Typhus Detect™ IgM ELISA. Patients originated from 47 (of a total of 77) districts in 7 provinces of Nepal, providing a broad geographical coverage for this study (Fig. 1A).

High prevalence of Ot DNA in serum samples

Quantitative molecular testing for the Ot-specific 16S gene by qPCR from acute scrub typhus sera revealed a measurable bacterial load in 93/238 patients (39.1%, Fig. 1B, Table S1), with a median of 410.3 16S gene copies/mL (IQR 55.31-2502). Bacteremia varied between 1 and 10^6 genome equivalents/mL (Fig. S1A), resembling a normal distribution. Using a second qPCR targeting the 47kD outer membrane protein gene, 86 of 93 16S-positive samples (92.5%) were confirmed (Fig. 1B). A simple linear regression analysis revealed a close correlation between the 16S and 47kD gene copies, with an R^2 of 0.4809 ($p<0.0001$, Fig. S1B). This suggests that quantification results in this study were comparable by either gene target.

Phylogenetic analysis of partial Ot 56 kD sequences from Nepal

To characterize the genetic diversity of human-pathogenic Ot strains from Nepal, partial sequences from the 56kD gene, spanning the variable domain I (≈400 bases), were amplified and sequenced by Sanger sequencing. In 35/86 (41%) qPCR-confirmed samples, the 56kD fragment was amplified. Sequences of sufficient quality were obtained in 25 of these samples (25/86, 29%). Samples with successful 56kD
amplification had a higher mean concentration of Ot in serum by 16S qPCR compared to those without (Fig. S2).

As shown in Fig. 2, the 25 Nepalese sequences clustered into 7 different groups and showed high homology within each group: 7/25 (28%) were closely related to UT176, 5/25 (20%) to the NT0707a strain, 5/25 (20%) to ISS-2, 3/25 (12%) to QNamMH strain, 2/25 (8%) to Kato, and 1/25 (4%) showed high homology with the Jin2012 strain. Of note, we did not identify one specifically Nepalese cluster of Ot. Instead, the sequences clustered most closely with strains detected e.g. in Vietnam, India, Taiwan, Thailand or China (Fig. 2). Interestingly, 2/25 (8%) sequences, which were identical, displayed 10 mismatches with respect to the closest published strain, and thus did not fall into any of the named prototype categories (sequences #4314; #4636). To our surprise, the sequences within a given cluster showed a high homology, despite their origins from distantly located sites, as depicted in Fig. S3/Table S2.

Distinct cytokine/chemokine profiles in Nepalese scrub typhus patients with and without bacteremia

To examine the relationship between bacteremia and serum cytokine levels, three groups were formed: Patients with bacteremia (16S+), patients without bacteremia (16S-) and healthy blood donors as controls (HD). For acute samples, patients were matched with respect to age, sex, and residence. First, a pilot study for analysis of 12 T helper cell subpopulation-associated cytokines and 13 chemokines (n=30 patients per group, n=8 controls) was conducted. Based on initial results, a selective analysis of four cytokines (IL-6, IL-10, IFN-γ and TNF-α) and four chemokines (MCP-1 (CCL2), RANTES (CCL5), IP-10 (CXCL10) and IL-8 (CXCL8) followed; data were obtained for a whole of n=64 patients per group and n=50 controls.
As shown in Fig. 3A-D, scrub typhus patients both with and without bacteremia had higher serum levels of IL-6, IL-10, and the Th1-associated cytokines IFN-γ and CXCL10, compared to healthy donors (p<0.0001). Also, patients with bacteremia had significantly higher levels of these four cytokines compared to patients without bacteremia (Fig. 3A-D). In contrast to this, TNF-α levels surprisingly showed no difference between the three groups analyzed (Fig. 3E).

Unlike for IFN-γ and CXCL10, we found no such upregulation for the Th2-associated cytokines IL-4, IL-5, and IL-13, or the other measured cytokines (Fig. S4A-F). In fact, IL-5 levels were even lower in bacteremic patients, compared to healthy donors (Fig. S4C).

Hypothesizing that the presence of bacteria in serum could be a driver of increased cytokine responses, we investigated correlations between bacterial DNA and cytokine concentrations, using a linear regression model. A positive correlation between bacteremia and IL-6, IL-10, and the Th1-associated cytokines IFN-γ and CXCL10 was found (Fig. 3F-I). Surprisingly, concentrations of TNF-α (R²=0.002325; p=0.7097) were independent of bacteremia (Fig. 3J).

To investigate whether the complex cytokine responses in bacteremic and non-bacteremic patients correlate internally, which would generate clustering of groups on a higher dimensional scale, the data set was visualized by t-SNE. Data sets for IL-6, IL-10, TNF-α, and the Th1-related cytokines IFN-γ and CXCL10 were included. The clustering pattern suggested distinct cytokine profiles in bacteremic and non-bacteremic scrub typhus patients, who were both clearly separated from healthy donors (Fig. 4A). 2D heat maps demonstrated a positive correlation between IL-6 and IL-10 (r=0.68), IL-6 and IFN-γ (r=0.67) as well as between IL-6 and CXCL10 (r=0.41) in bacteremic patients (Fig. 4B, left panel). These correlations waned in non-
bacteremic patients, where TNF-α now showed a positive correlation with IL-6 ($r=0.60$), which differed from bacteremic patients ($r=0.23$, Fig. 4B, right panel). These differential correlations between IL-6 and IL-10, IFN-γ and CXCL10 in bacteremic and non-bacteremic patients were confirmed by linear regression analysis (Fig. S5). In contrast to the Th1 cytokines, the Th2-related cytokines IL-4 and IL-5 as well as IL-2, showed no correlation to bacteremia (Fig. S6A-C) or IL-6 (Fig. 4A,B and S6D-F).

With regards to alterations of the chemokine signature, we also found that the mean concentration of IL-8 was elevated in scrub typhus patients, regardless of bacteremia status (Fig. 5A). In the 13 chemokine panel obtained in the pilot subset, CCL2 and CXCL9 were only elevated in 16S-positive, bacteremic patients (Fig. 5B,C). Interestingly, in addition to IL-5, the chemokines CCL11 (Eotaxin), CCL17 (TARC), and CXCL5 (ENA-78) were also lower in scrub typhus patients compared to healthy donors, with and without bacteremia (Fig. 5D-F). Other mediators were not significantly elevated or reduced in comparison to healthy controls (Fig. 5G-L). The cytokine/chemokine signature thus involved elevated serum levels of IL-6, IL-10, IL-8, as well as IFN-γ and CXCL10 in scrub typhus patients from Nepal, plus CCL2 and CXCL9 in those with bacteremia. Lower levels were found for CCL11, CCL17, and CXCL5 in scrub typhus patients, plus lower levels of IL-5 in those with bacteremia.

We conclude that the cytokine/chemokine signatures differ between scrub typhus patients with and without bacteremia, both in quality and quantity.
Discussion

This is the first comprehensive study on scrub typhus in Nepal that provides a deeper insight into molecular diagnostics, genetic epidemiology and immunoregulation of human *Ot* infection in this country, in a large cohort of *n*=238 individuals. First, we showed here that 39.1% of IgM-positive scrub typhus patients had detectable *Ot* DNA in serum samples, which is within the reported range of PCR positivity in 25-65% of patients [31]. Due to the intracellular nature of *Ot*, an even higher DNA detection rate might have been obtained from cellular blood samples, such as buffy coat, as compared to serum samples [32]. Moreover, our study provides the first representative picture of the genetic heterogeneity of human-pathogenic *Ot* strains in Nepal, a topic previously addressed by only one study: Gautam et al. had concluded the existence of one main Nepalese cluster, which differed from strains detected in other countries [8]. With 7 distinct clusters, we report a high genetic diversity of Nepalese human-pathogenic *Ot* strains. The different conclusion by the Gautam study may have been influenced by the study area that was restricted to one district (Chitwan) and a small number of samples (*n*=6).

Interestingly, some newly found sequences showed high homology despite geographically distant origins. Studies from other countries, e.g. India and Laos, also reported a great in-country diversity and clustering of samples independent of geographical distance [33,34]. A reasonable explanation might be the association of certain *Ot* genotypes with specific mite vectors that are adapted to certain ecological habitats, or the migration of strains by vectors or mechanical carriers, such as birds and rodents [35]. Also, the travel history of patients might play a role. One of the limitations of the present study is that a precise travel history was not obtained, so the acquisition of the sequenced *Ot* strains may not always have occurred at the residence indicated. Moreover, partial 56 kD sequence information, despite a frequently used tool
for phylogenetic analyses [9,10], might not accurately mirror the actual genetic relationships, as would larger data sets from next-generation sequencing approaches [36]. However, 56 kD-based trees largely resemble trees that were constructed from the 657 core genes of Ot obtained by whole genome sequencing [37], suggesting that 56 kD sequences allow an approximation. The fact that 56 kD amplicons were obtained from only 25/86 qPCR-confirmed samples could be related to a much lower sensitivity of this assay, as suggested by previous reports [38]. In support of this interpretation, we found a lower mean bacteremia in samples without detectable 56 kD amplicon. The lower detection rate could also be related to suboptimal binding of 56 kD primers in some strains, so that the genetic diversity of Ot in Nepal might be even higher than found in this study.

The second part of the study focused on characterizing the cytokine profile in Nepalese scrub typhus patients. We observed higher levels of IL-6, IL-10 and the Th1-associated cytokines IFN-γ and the chemokines CXCL10, CXCL9, IL-8 and CCL2 in our patient cohort. We also demonstrated a correlation of cytokine levels with the bacterial load, whereas patients without bacteremia showed lower levels of these cytokines. This suggests bacteremia as an important driver of these cytokines, e.g., via pattern recognition receptors (PRR). Although CXCL10 and CCL2 are typically involved in shaping the migration of Th1 cells [39,40], they likely represent an innate, possibly monocytic response to the pathogen [17]. IL-6 and the neutrophil attractant chemokine IL-8 are typically elevated innate cytokines in scrub typhus, as previously reported [18,23]. Upregulation of IL-10 in acute scrub typhus was also previously described [18] and shown to be associated with bacteremia [41]. IL-10 modulates the host response and inhibits Th1 immunity, which is thought to be essential for clearing Ot. It was postulated that Ot manipulates the host immune response by upregulating IL-10 to inhibit TNF-α production, thus restricting bacterial growth in macrophages [16,42].
upregulating IL-10, *Ot* could be building a strategic environment for its survival and growth. TNF-α, on the other hand, showed no correlation with bacterial load in our study, and also no difference to healthy donors, which is in contrast to observations in two studies from Thailand and in returning travellers [18,23]. Despite TNF-α being a marker of clinical severity [18,25,26], our data advocate that TNF-α may not be directly driven by bacteremia, and the elevated TNF-α levels found in severe cases of scrub typhus may be induced via PRR-unrelated mechanisms. Also, it is possible that our cohort comprised mainly mild scrub typhus cases; however, clinical data to confirm this were not collected.

High levels of CXCL9 and CXCL10 in bacteremic patients underline the prominent role of these cytokines in immune responses to intracellular pathogens. CXCL10 (together with CXCL9) is the main ligand to the T cell chemokine receptor CXCR3, which is known to direct migratory behaviour of T cells *in vivo*. This interaction is necessary to deliver effector T cells to specific anatomic locations, with CXCR3 driving T cells into lymphoid regions that are highest in antigen [43,44]. Moreover, CXCL10 affects the balance between effector and memory T cell generation [45]. Strength of inflammatory stimuli is crucial for the cell fate decision of effector versus memory T cells, with CXCL10-CXCR3 promoting commitment towards an effector phenotype [46]. As *Ot* is an intracellular pathogen, it is interesting to note that CXCR3-mediated effects on memory T cell formation have been described in a model of mycobacterial infection before [47]. More research will be necessary to clarify how the plasticity of short-lived effector versus long-term memory cells can be targeted to improve the clinical outcome of *Ot* infections.

Of note, we also obtained data that support a skewed Th1/Th2 balance during acute scrub typhus. The Th2-associated cytokines IL-4 and IL-13 were not upregulated, and IL-5 levels were even lower than in healthy controls. On the chemokine level,
concentrations of CCL11 (Eotaxin), CCL17 (TARC) and CXCL5 (ENA-78) were reduced, which was previously observed only for CCL17 [18]. These chemokines have been implicated in the development of Th2-associated conditions, e.g. gastrointestinal helminth infection [48] or allergic asthma [49]. CXCL5 is expressed by eosinophils, which are hallmarks of Th2 responses [50]. Th2 cells express a set of chemokine receptors that differs from Th1 cells, and interaction with their ligands dictates a different chemotactic behavior [40,51]. Thus, the lower serum concentrations of Th2-associated cytokines in scrub typhus patients are consistent with impaired Th2 responses especially during bacteremia, similar to observations in experimental mouse infections [52,53].

We found that only in bacteremic patients, IL-6 responses correlated with other cytokines. The non-bacteremic patients could represent a later disease stage, in which IL-6 induction is sustained, while other cytokines are already reduced, or IL-6 is regulated independently in this phase. As a limitation of this study, we could not obtain follow-up samples upon convalescence to confirm this hypothesis.

In sum, our study reports the existence of at least 7 human-pathogenic Ot clusters in Nepal. These clusters were closely related to Ot strains detected in other Asian countries. Moreover, the cytokine/chemokine profile in acute scrub typhus patients was characterized by strong Th1 and impaired Th2 responses, and distinct cytokine/chemokine profiles were found in bacteremic and non-bacteremic patients. These data add to our understanding of scrub typhus pathogenesis and will be of help in the search for prognostic biomarkers.
Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Funding Source

We thank the German Center for Infection Research (DZIF) for financial support of the study. The funding body had no role in study design, writing of the manuscript, of the decision to submit for publication. No payment was received for writing by pharmaceutical companies or other agencies.

Ethical Approval statement

The study protocol was approved by the Nepal Health Research Council (votes 22/2015, 172/2015 and 91/2017) and the Ethics Commission of Philipps University Marburg (vote 23/21).
References

Bora T, Khan SA. Evaluation of Th1 and Th2 immune response in clinical and
https://doi.org/10.1016/J.HUMIMM.2019.03.013.

Complex cytokine responses in imported scrub typhus cases, Germany, 2010-
0498.

Khowawisetsut L. Endothelial Activation in Orientia tsutsugamushi Infection Is
Mediated by Cytokine Secretion From Infected Monocytes. Front Cell Infect

[25] Kim HL, Park HR, Kim CM, Cha YJ, Yun NR, Kim DM. Indicators of severe
prognosis of scrub typhus: Prognostic factors of scrub typhus severity. BMC

between the concentrations of tumor necrosis factor-α and the severity of
disease in patients infected with Orientia tsutsugamushi. Int J Infect Dis

[27] Rajapakse S, Weeratunga P, Sivayoganathan S, Fernando SD. Clinical
https://doi.org/10.1093/trstmh/trx017.

Prevalence and risk of hepatitis E virus infection in the HIV population of Nepal.

[29] Sonthayanon P, Chierakul W, Wuthiekanun V, Phimda K, Pukrittayakamee S,
Day NP, et al. Association of high Orientia tsutsugamushi DNA loads with
disease of greater severity in adults with scrub typhus. J Clin Microbiol

https://doi.org/10.1084/jem.20071836.

https://doi.org/10.1046/j.1365-2222.2003.01609.x.

https://doi.org/10.1172/JCI1422.

https://doi.org/10.1371/journal.pntd.0005765.

https://doi.org/10.1371/journal.pntd.0003191.
Figure legends

Fig. 1 Reported residence of scrub typhus patients and study design. (A) Blood samples were collected from n=238 *Orientalikeratoza* ELISA-positive patients with acute scrub typhus, who reported residence in 47 districts in all 7 provinces of Nepal. Districts with positive samples are marked in red, the intensity of the red color indicates the number of positive samples. (B) Serum samples from 238 patients were analyzed for bacterial DNA by 16S-and 47kD-specific qPCRs. From qPCR-positive samples, a fragment of the 56kD gene was amplified, sequenced, and phylogenetically analyzed. Serum levels of preselected cytokines were analysed in 128 samples of scrub typhus patients (*n*=64 with bacteremia, *n*=64 without bacteremia) and compared to serum levels in healthy controls (*n*=50).

Fig. 2 Phylogenetic tree of partial 56 kD sequences.
From *n*=25 acute Nepalese scrub typhus sera, partial *Orientalikeratoza* 56 kD sequences spanning the variable domain I were aligned by ClustalW multiple alignment, and a phylogenetic tree was constructed in Geneious 11.1.5 using the neighbor-joining tree method (Tamura-Nei model).

Fig. 3 Plasma cytokine levels in patients with and without bacteremia
The concentrations of the cytokines (A) IL-6, (B) IL-10, (C) IFN-γ, (D) CXCL10 and (E) TNF-α was measured in the serum of 16S qPCR-positive (16S+, *n*=64) and -negative (16S-, *n*=64) scrub typhus patients, and compared to healthy donors (HD, *n*=50). Data
are shown as median values. Dashed lines indicate the limit of detection. ****p<0.0001; ns, not significant by unpaired, two-tailed t-test. (F-J) Linear regression analysis between cytokine concentrations and bacteremia as measured by 16S qPCR was performed. Shown is the correlation of bacteremia with (F) IL-6, (G) IL-10, (H) IFN-γ, (I) CXCL10, (J) TNF-α concentrations. Each dot represents one sample (mean±SEM of technical duplicates). Best-fit line is shown together with 95% dashed confidence bands. Goodness of fit is indicated by R^2. The p value indicates whether the slope is significant non-zero.

Fig. 4: Distinct cytokine profiles in scrub typhus patients with and without bacteremia

(A) A t-Distributed Stochastic Neighbor Embedding (t-SNE) plot was created from IL-6, IL-10, TNF-α and CXCL10 concentrations and bacteremia. Each dot represents one patient, from the groups of 16S-positive (n=64), 16S-negative patients (n=64) and healthy donors (n=50). (B,C) Heat maps with correlations between individual cytokines in 16S qPCR-positive (B) and 16S qPCR-negative scrub typhus patients (C). Pearson’s correlation coefficient r is shown in each cell.

Fig. 5. Th1-skewed chemokine profile in scrub typhus patients

(A-L) Serum levels of 12 chemokines (IL-8 (CXCL8), MCP-1 (CCL2), MIG (CXCL9), Eotaxin (CCL11), TARC (CCL17), ENA-78 (CXCL5), MIP-1α (CCL3), MIP-1β (CCL4), RANTES (CCL5), MIP-3α (CCL20), GRO-α (CXCL1), I-TAC (CXCL11)) measured by multiplex bead assay in scrub typhus patients with bacteremia (n=30, 16S+), without bacteremia (n=30, 16S-) and healthy donors (n=8, HD). Sample sizes...
for CXCL8 and CCL5 were n=64 for patients and n=50 for healthy donors. Data are shown as median values. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001, ns, not significant by unpaired, two-tailed t-test. Values below detection limit are not shown.